Document Type
Article
Publication Date
7-19-2019
Abstract
This year marks the 60th anniversary of Russell and Burch’s pioneering book, The Principles of Humane Experimental Technique. Their 3Rs framework has helped to inspire humane and scientific progress in experimental technique. However, it is time to update its strategic application. The 21st century has already seen the development of promising, high-tech non-animal models, such as organs-on-a-chip and computational approaches that, in our view, will replace animals as the default option in biomedical experimentation. How fast this transition will take place will depend on the pace at which these new models are optimized to reflect the biology of humans, rather than that of non-human animals. While the new methods are likely to reshape all areas in which animals are currently used in science, we particularly encourage their application in biomedical research, which accounts for the bulk of animals used. We call for the pursuit of a three-prong strategy that focuses on (1) advancing non-animal methods as replacements of animal experiments, (2) applying them to biomedical research, and (3) improving their relevance to human biology. As academics and scientists, we feel that educational efforts targeted at young scientists in training will be an effective and sustainable way to advance this vision. Our strategy may not promise an imminent end to the use of animals in science, but it will bring us closer to an era in which the 3Rs are increasingly perceived as a solution to a receding problem. Russell and Burch themselves surely would have welcomed these positive changes.
Recommended Citation
Herrmann, K., Pistollato, F. and Stephens, M. (2019) “Beyond the 3Rs: Expanding the use of human-relevant replacement methods in biomedical research”, ALTEX - Alternatives to animal experimentation, 36(3), pp. 343-352. doi: 10.14573/altex.1907031.
Included in
Bioethics and Medical Ethics Commons, Laboratory and Basic Science Research Commons, Research Methods in Life Sciences Commons
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).