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ABSTRACT 

Cerebral lateralization refers to the division of cognitive function in either brain hemisphere and may be 
overtly expressed as behavioral asymmetries, such as handedness. The evolutionary history of laterality 
is of considerable interest due to its close link with the development of human language. Although 
considerable research effort has aimed at the proximate explanations of cerebral lateralization, 
considerably less attention has been paid to ultimate explanations. The extent to which laterality is 
constrained by phylogeny or shaped by ecological forces through natural selection has received little 
attention. Here, the foot preference of 23 species of Australian parrots was examined to investigate the 
link between laterality and body size. The raw data indicated that the strength of laterality was related to 
body size and an associated foraging mode. The results of the phylogenetic generalized least squares, 
however, indicated that both the pattern (left, right, or ambidextrous) and strength of laterality showed a 
high degree of phylogenetic inertia. Regressions based on independent contrasts revealed no 
relationship between laterality and body size. These results suggest that laterality in Australian parrots 
has been shaped by just a few events deep in their evolutionary history. We hypothesize that cerebral 
lateralization may provide a fitness benefit to larger bodied species that extract seeds from seedpods 
using coordinated foot–beak actions. The secondary loss of laterality in smaller body species may have 
been associated with a shift to grazing on small seeds and blossoms as Australia became increasingly 
arid.  

 

 

INTRODUCTION 

Cerebral lateralization (the division of cognitive processing between the 2 brain hemispheres) was 
considered a unique human trait for over a century because of its intimate relationship with the control of 
human speech and other ‘‘higher order’’ cognitive functions (Crow et al. 1998; Rogers 2000; Corballis 
2002). Recent studies on lateralization of cognitive function have shown that it is in fact a ubiquitous 
vertebrate trait and may be common even among invertebrates (Vallortigara 2000; Byrne et al. 2002; 
Rogers and Vallortigara 2008). Cerebral lateralization is often expressed behaviorally and behavioral side 
baises that it produces are collectively referred to as laterality. Domestic chicks, for example, have a left-
sided turning bias (Casey and Karpinski 1999), toads use the right paw to wipe objects from their head 
(Bisazza et al. 1996), and a number of parrot species favor the left or right foot to manipulate objects 
(Rogers 1980; Magat and Brown 2009). Cerebral lateralization, therefore, is most likely an ancient 



evolutionary trait that has a substantial influence on behavioral expression in animals and provides a 
noninvasive insight into the workings of the animal mind. 

Several lines of evidence suggest that laterality plays an important role in shaping the everyday behavior 
of animals and is subject to natural selection (Vallortigara and Rogers 2005). Firstly, there is ample 
evidence that laterality varies between individuals within populations. For example, individual chimps 
show different hand preferences while fishing for termites and strongly lateralized individuals are more 
efficient at extracting termites than ambidextrous individuals irrespective which hand they use (Marchant 
and McGrew 1996). Secondly, variation in laterality has fitness consequences; strongly lateralized parrots 
are better able to solve novel problems than nonlateralized parrots (Magat and Brown 2009). Similarly, 
schools comprised of strongly lateralized fish are more highly synchronized then schools of nonlateralized 
fish (Bisazza and Dadda 2005). Lastly, lines of strongly and left- and right-biased fish populations have 
been produced in the laboratory by artificial selection thus, in fish at least, laterality is partially heritable 
(Bisazza et al. 2000; Brown et al. 2007). Moreover, comparative data collected from fish populations that 
differ in their exposure to predation pressure reveal population level variation in laterality (Brown et al. 
2004). Thus, there is also some evidence of evolution acting to shape lateralized characters in wild 
populations. 

If laterality is favored by natural selection as illustrated above, it raises the intriguing question as to why 
we see so much variation at both the individual and species levels. Put simply, why are not all animals 
strongly lateralized? Some species of parrots contain left, right footed, and ambidextrous individuals 
approximating a normal distribution at the species level. In other species, however, the population 
distribution is strongly skewed with all individuals being strongly left footed, whereas in still other species, 
all individuals are strongly right footed (Brown and Magat 2011). This conundrum has received 
considerable attention in reviews addressing various factors that might contribute to population level 
biases in laterality (see e.g., Vallortigara and Rogers 2005; Corballis 2009; Ghirlanda et al. 2009). More 
generally, the lack of uniformity within species and across closely related species suggests that laterality 
must also incur costs that are likely to be context specific. Experimental work on fishes has shown that 
strongly lateralized individuals have a tendency to consistently turn in one direction, which reduces their 
ability to navigate efficiently within a maze (Brown and Braithwaite 2005). Similarly, strongly lateralized 
fish are more likely to make errors when attempting to choose between laterally positioned schools of 
varying sizes (Dadda et al. 2009). From a behavioral ecology perspective, we might expect the relative 
costs and benefits associated with laterality to vary depending on the physical and social environment in 
which animals live and the various selective forces that operate within that environment (e.g., predators, 
Brown et al. 2004). 

One of the most obvious examples of laterality is right-hand preference to manipulate objects in humans. 
Lateralization of limb use at the population level akin to that observed in human handedness where 
approximately 90% of the population is right handed appears to be relatively uncommon in the animal 
world, although there have been multiple attempts to identify a nonhuman precursor particularly among 
primates. Pioneering work by Hopkins (reviewed by Corballis 2009) showed that captive chimps also 
display right-hand biases in a range of tasks, but the level of bias rarely exceeded 65%. Meta-analysis 
has revealed the species level laterality in primates is rare and almost entirely absent in wild populations 
(McGrew and Marchant 1997; Papademetriou et al. 2005). For example, studies examining termite fishing 
in wild chimpanzees have shown that limb biases can be found in individuals but no bias exists in the 
general population (Marchant and McGrew 1996). Recent evidence has suggested that captive 
chimpanzees prefer to use their right hand during communicative gesturing (Meguerditchian et al. 2010), 
but this is linked to language formation rather than object manipulation. Thus, there is to be continued 
debate regarding the evidence for hand biases while manipulating objects among primates (Hopkins and 
Cantalupo 2005). There is also some evidence of hand preferences in rats when reaching for food where 



73% of the population showed a right paw preference (Guven et al. 2003). Walker (1980) has stated a 
general hypothesis that preferential use of a limb occurs only in those species that use their limbs for 
manipulative tasks. Rogers (2009) further suggests that the nature of the task is likely more important 
than the complexity of the task per second. Thus, the expression of limb preferences for manipulating 
objects may not show a consistent phylogenetic signal, and results could vary depending on the assay 
applied. Moreover, given that laterality varies between populations and may have varying costs and 
benefits depending on the context, it may be that ecological variables play a more important role in 
shaping the evolution of laterality than relatedness by decent (Brown et al. 2004). 

Many species of parrots have strong preferences for using one foot for feeding (Harris 1989), and in 
contemporary debates about laterality in animals, the parrot is often cited as an exemplar of laterality in 
limb function at the population level comparable in kind and strength to handedness in humans 
(Friedmann and Davis 1938; Rogers 1980; Magat and Brown 2009). Brown and Magat 2011 analyzed the 
link between foot preferences and eye preferences in 16 species of parrots and found considerable 
variability between species. In all but one case, eye and foot preferences while viewing and manipulating 
potential food items where highly correlated suggesting the cerebral lateralization, eye and foot 
preferences are all functionally related. The comparative analysis revealed that some species are left 
handed at the population level, others are right handed, whereas others contain individuals spread across 
the spectrum. The reason for such variability and the evolutionary history of laterality in parrots in general 
has yet to be explored. Examination of the phylogenetic distribution of traits can provide information 
regarding their evolutionary history. When taken together with ecological data, one can elucidate the likely 
evolutionary forces that may have shaped the distribution of the trait over time. 

Australian parrots occupy a wide range of habitats and feed on a variety of different food sources, some 
requiring manipulation with the foot (e.g., large banksia seedpods), whereas others do not (e.g., small 
grass seeds and nectar). Thus, we can use parrots as a model family to examine the link between 
foraging ecology and the evolution of lateralization. The preferential use of the left or right foot, however, 
may also be constrained by phylogeny whereby closely related species should show evidence of niche 
conservatism (i.e., identity by descent). In the latter case, we would expect to see consistent foot 
preferences within each of the major parrot clades, whereas in the former case, laterality ought to be 
correlated with ecological variables. Naturally, these are not mutually exclusive alternatives, thus the 
phylogenetic distribution of the trait may show evidence of both processes operating over various time 
scales. Moreover, our research examining the link between cognition and laterality in parrots revealed 
that there is no particular advantage to being left or right handed, so long as cognitive and/or motor 
function is lateralized the corresponding fitness advantage will be realized (Magat and Brown 2009). 
Thus, one might predict that the strength of laterality may be more strongly shaped by ecological 
variables than the direction of laterality. 

Here, we examined laterality in 23 species of parrots encompassing most of the diversity across the 
Australian parrot phylogeny to investigate ecological and phylogenetic correlates of lateralization. There 
were 2 primary aims in this study: 1) to describe the pattern and strength of lateralized foot preferences in 
Australian parrots and 2) to establish to what extent laterality is constrained by phylogenetic relationships 
or varies according to important ecological variables, such as body size and foraging mode. 

METHODS 

This study examined the behavior of both captive and wild individuals. Captive parrots were observed at 
zoos (e.g., Taronga Park Zoo), animal parks (e.g., Featherdale Wildlife Park), pet stores (e.g., Crystal Pet 
and Wire Centre), and at the premises of parrot breeders. Wild parrots were observed on the Macquarie 



University campus and surrounding areas. In all cases data for each species was obtained from multiple 
populations/sources. 

To increase the power of the phylogenetic comparison, a wide range of parrot species representing the 
great variety of parrots in Australia were included in the study. In total, 23 native species of parrots and 
cockatoos were examined (Table 1). Adults were the primary focus of the study because laterality can 
vary with development (Hook and Rogers 2000). The aim was to observe 20 individuals per species in 
order to obtain a sensible approximation of the proportion of those that are left or right footed in any given 
species. For a few species, such as rare species in zoos, only a limited number of individuals were 
observed, thus some caution should be exercised when considering the results of those particular 
species. Specimens from each species were observed at multiple locations to attempt to capture some of 
the species diversity. 

Determining foot preferences 

Food items were placed on trays and introduced to the center of the enclosure. Only one animal was 
allowed access to the tray at a time. The foot used to grasp the food was recorded by an observer 
standing more than 2 m away. The test was repeated over several days, by substituting equivalent sized 
pieces of various fruit. Each bird was given 10 tests. Although other birds in the cage could observe the 
subject manipulating the food item, it is highly unlikely that they would imitate the hand used to grasp the 
food item as this is a very natural behavior for parrots and motor imitation in birds is exceptionally rare 
(Zentall 2004). 

Nine species were examined in the wild as well as in captivity to determine if rearing environment 
influenced laterality. For wild birds in the field, food was provided on a platform a few meters from where a 
large flock was feeding on the ground. All observations were made through binoculars at least 20 m from 
the flock; a distance great enough to prevent the observers’ presence interfering with their behavior. Only 
2 individuals from each flock were observed at any one time. Two observers were needed to keep track 
of these individuals, and the test was repeated 10 times in 1 day using the same birds. The foot used to 
grasp the food item was tabulated. 

The laterality score for each individual was calculated as the proportion of times the parrot used its left 
hand to grasp the food. The strength of laterality was also calculated for each individual as the deviation 
from ambidexterity (i.e., absolute value [% left foot score 250%]). For example, an individual parrot that 
used its left foot 10 times received a score of 50, similarly an individual who used the right foot 10 times 
scored 50 because both are equally strongly lateralized but in opposite directions. Thus, this score is a 
measure of the strength of lateralization independent of direction (L or R). Scores of 0 represent 
ambidextrous individuals, and scores of 50 represent completely lateralized individuals. From the 
individual data, we calculated the mean and standard error for each species. 

Ecology 

When one examines the body size of parrots across the phylogeny, it is apparent that a strong 
segregation by size between the major clades exists. Our previous observations suggested that large 
parrots tend to use their feet to manipulate large seedpods in order to extract the seeds, whereas the 
smaller body species primarily graze on grass seeds or extract pollen and nectar from flowers (Table 1). 
We hypothesized that those species that regularly use their feet to manipulate food items would be more 
strongly lateralized than those that do not (sensu Walker 1980). Firstly, a linear regression was used to 
determine if the level of foot lateralization (pattern and strength) was related to body size. Secondly, the 
species were split into 2 groups according to diet. The first group contained species that eat small seeds 



and nectar, whereas the second group contained those that are reported to eat large seeds. We used an 
analysis of variance (ANOVA) to compare the strength and pattern of laterality of species in each group. 

Table 1. Number of individuals observed, diet, body size, and foot laterality score for each species 

Species Common name 
Number of 
individuals 
observed 

Body 
size 
(cm) 

Primary diet 
Foot 

laterality 
score 

(%) 

Cacatua galerita Sulphur-crested 
Cockatoo 20 47.5 Large seeds, nuts, and bulbs 96 

Cac. sanguinea Little Corella 20 38.5 Large seeds, roots, and bulbs 90.5 

Cac. leadbeateri Major Mitchell’s 
Cockatoo 15 36 Large seeds, roots, berries, and nuts 92 

Eolophus roseicapilla Galah 20 35 Small seeds of native or cultivated grasses 56.5 

Callocephalon 
fimbriatum 

Gang-gang 
Cockatoo 12 35 Large seeds of native trees 100 

Calyptorhynchus 
funereus 

Yellow-tailed Black 
Cockatoo 20 60 Large seeds and wood-boring larvae 96.5 

Cal. banksii Red-tailed Black 
Cockatoo 20 59 Large seeds of native trees 93 

Nymphicus hollandicus Cockatiel 20 32 Small seeds from native or cultivated plants 90 
Probosciger aterrimus Palm Cockatoo 5 60 Large seeds and fruits 80 
Eclectus roratus Eclectus Parrot 20 42 Large seeds, berries, fruits, nuts, and blossoms 26 

Alisterus scapularis Australian King 
Parrot 20 43 Large seeds, berries, fruits, and nuts 8.5 

Aprosmictus 
erythropterus Red-winged Parrot 10 32 Large seeds, fruits, buds, and blossoms 10 

Polytelis swainsonii Superb Parrot 20 40 Large seeds, eucalyptus blossoms, and fruits 27.5 
Neophema pulchella Turquoise Parrot 10 20 Small seeds of grasses and herbaceous plants 45 
Platycercus elegans Crimson Rosella 12 33.5 Large seeds and fruits 17.5 
Barnardius zonarius Australian Ringneck 5 35 Large seeds of native trees 20 

Purpureicephalus 
spurius Red-capped Parrot 5 36 Large seeds of the marri tree and other 

eucalyptus 72 

Psephotus 
haematonotus Red-rumped Parrot 20 28 Small seeds from grasses and cultivated crops 72 

Glossopsitta pusilla Little Lorikeet 15 15 Nectar, blossoms, and fruits 49.3 
Psitteuteles versicolor Varied Lorikeet 5 19 Nectar, blossoms, and fruits 48 

Trichoglossus 
haematodus Rainbow Lorikeet 20 30 Nectar, blossoms, and fruits 46 

Melopsittacus 
undulates Budgerigar 20 18 Small seeds of grass tussocks 52 

Neopsephotus bourkii Bourke’s Parrot 20 20 Small seeds found on the ground 49.5 
      
Diet and body size information were obtained from Lindsey 1998 and McNaughton 2002. 

 



Phylogenetic analysis 

The phylogeny of Australian parrots is still largely unresolved, with most species yet to be appropriately 
sampled and the position of various taxa is still disputed (Schweizer et al. 2010). We utilized a phylogeny 
recently published by Symonds and Tattersall (2010) which represents a composite tree. Our samples 
covered a broad selection of species within each of the major lineages of the Australian parrots. We 
reduced the tree to encompass only those species for which we had reasonable data. In order to 
investigate the distribution of the pattern and strength of laterality, we simply mapped the laterality traits 
onto the tree. 

Phylogenetic comparisons where conducted using the phylogenetic generalized least squares (PGLS) 
approach (Martins and Hansen 1997) in the program COMPARE 4.6B (Martins 2004). Because of the 
lack of good phylogenetic data, all branch lengths were set to one. Similarly, where polytomy occurred, 
branch lengths were finely manipulated by arbitrarily assigning branch lengths of 0.001 to create 
bifurcating topologies that allow the program to resolve the tree. We used PGLS to examine the 
relationship between laterality (both strength and direction) and body size relative to phylogeny. Low 
values of a are indicative of a strong phylogenetic signal, whereas high values suggest that the traits are 
distributed randomly across the phylogeny (Martins and Hansen 1997). Phylogenetic independent 
contrasts analysis was then performed. In essence, this analysis determines if the evolutionary 
divergences in one trait are significantly correlated with corresponding divergences in another trait. 
Standardized contrasts for each trait were extracted from the data set, and we then applied linear 
regression to determine the relationship between body size and laterality. Ancestral reconstruction of the 
traits was calculated by the generalized least squares (GLS) method of Martins and Hansen (1997). 
Briefly, the ancestral states are calculated based on the weighted averages of the other taxa in the 
phylogeny. The model assumes that evolution of traits occurs in a linear fashion (i.e., by Brownian 
motion), which is a common assumption of characters undergoing random drift or subject to directional 
selection. It should be noted, however, that the removal of taxa from the tree (i.e., incomplete data sets) 
can influence the weighted averages thus it is important to collect data on as many species as possible. 
This method allows us to identify the positions within the tree where significant evolutionary changes have 
occurred in each trait. Significant changes are identified by variations in trait values along the branches 
that exceeded 1.96 standard errors (a rough equivalent of 95% confident intervals; Rohlf 2001). 

RESULTS 

Foot preferences 

A comparison of the wild versus captive reared parrots showed no significant differences in any of the 9 
species tested in either the strength or direction of laterality (P < 0.05 in all cases). Thus, all individuals 
were included in the analysis irrespective of their rearing background. 

The distribution of foot preferences across the phylogeny suggested that a significant divergence in 
laterality occurred very early on in the evolution of Australian parrots (Figure 1). Our results revealed that 
all of the large extant cockatoos were left footed with the exception of the Galah (Cacatua roseicapillus), 
which was nonlateralized at the species level and contained a mix of left, right, and ambidextrous 
individuals. The first tribe within the Psittacidae, the Psittaculini, was all right footed at the species level. 
The second tribe, the Platycercini, contains a mix of left, right and nonlateralized species. Lastly, the 
Loriinae were all nonlateralized at the species level. 

 

 



Ecology—body size 

The relationship between body size and foot lateralization revealed some interesting patterns (Figure 2). 
Small-bodied species tended to be nonlateralized, but species above 32 cm in length were either left or 
right footed. Only one species (the galah) broke the trend. Owing to the split between the left- and right-
handed larger bodies species, the regression between percentage left-hand preference and body size 
was not significant (F1,22 = 3.41, P = 0.079, R2 = 0.10). However, the relationship between body size and 
the strength of laterality was highly significant (linear regression: F1,22 = 11.623, P = 0.002, R2 = 0.36) and 
clearly shows that larger parrots are generally more strongly lateralized than smaller parrots (Figure 3). 

Ecology—diet 

Examination of the food item preferences of each species suggests that those species that regularly use 
their feet to manipulate food items (e.g., large seeds) were strongly lateralized, whereas those that do not 
(e.g., they eat small seeds or blossom) were not lateralized (ANOVA: F1,21 = 15.423, P < ,0.001; Figure 4). 
There was no significant difference in the pattern of laterality between small and large seed eaters 
(ANOVA: F1,21 = 0.149, P = 0.703). 

Phylogenetic analysis 

The results of the PGLS analysis found a very strong phylogenetic signal when examining the relationship 
between the pattern of laterality and body size (α = 2.07); however, the signal was substantially reduced 
when examining the relationship between the strength of laterality and body size (α > 15.5). Regression 
analysis of the standardized contrasts produced from the phylogenetic independent contrasts analysis for 
body size and laterality produced no relationship for both pattern and strength of laterality (F1,21 < 0.185,  
P > 0.67, R2 < 0.01). 

Lastly, ancestral reconstruction of the traits using the GLS method (Martins and Hansen 1997) identified a 
number of positions within the tree where significant evolutionary changes have occurred (Figure 1). 
Within the cockatoos, the galah (Cac. roseicapilla) has undergone a significant decrease in both the 
pattern and strength of laterality; however, this is not accompanied by a significant decrease in body size. 
Similarly the sulphur-crested cockatoo has shown a significant increase in the strength of laterality 
becoming extremely left biased. After the Psittacidae and Loriinae diverged from the cockatoos 
(Cacatuidae), a number of significant changes occurred. Firstly, there was a significant shift to right   
footedness in the ancestor of the Psittaculini, and this shift continued in Alisterus scapularis (Figure 1A). 
This shift was associated with various shifts in the strength of laterality within the clade. This shift in 
laterality, however, was not associated with a significant change in body size (Figure 1B), with the group 
as a whole retaining a fairly large body size typical of the ancestral state. When the Platycercini and 
Lorianae diverged, a significant decrease in body size occurred (Figure 1B), and this is associated with a 
general loss of laterality in this clade. The emergence of both left- and right-handed species within the 
Platycercini is particularly interesting, and it is likely the further sampling is needed to examine the 
evolutionary significance of these shifts. Only Purpureicephalus spurius showed a significant shift toward 
left handedness. 

DISCUSSION 

Adopting a comparative approach to examine behavioral traits across a broad range of species occupying 
a diverse array of environments offers powerful insights into the evolutionary history of the traits in 
question. The analysis of the foot preferences in Australian parrots revealed that direction and strength of 
laterality where both strongly associated with phylogeny, but the strength of laterality was clearly linked to 
ecological factors. Reconstruction of ancestral states revealed several significant shifts in trait values 



during the course of evolution, but most importantly, the shift to nonlaterality from a putative lateralized 
ancestor was accompanied by a significant decrease in body size corresponding to a shift in diet from 
large seeds to small seeds and blossom. This strongly suggests that lateralization in Australian parrot foot 
preferences was driven by a shift in foraging mode with larger bodied strongly lateralized species eating 
large seeds extracted from seedpods requiring manipulation with a limb and small bodied nonlateralized 
species eating small seeds and blossom which need not be manipulated. 

Examination of the distribution of the pattern of foot use and body size in the Australian parrots and 
reconstruction of the phylogenetic history revealed a number of interesting patterns. Firstly, the 
Cacatuidae retained the ancestral large body size and became strongly left handed. The only exception is 
the galah, Cac. roseicapillus, which contained a mix of left, right, and ambidextrous individuals and is one 
of the smaller cockatoo species that reportedly eat small seeds (Lindsey 1998; McNaughton 2002) but 
also spends considerable time extracting tubers from the ground. It appears likely that the loss of laterality 
in this species may be associated with a dietary shift. When the tribe Psittaculini (Psittacidae) diverged, 
members of the clade maintained a relatively large body size, but the common ancestor underwent 
significant shifts in the pattern of laterality resulting in a right-handed clade. The branch leading to the 
Platycercini and the Loriinae underwent a significant decrease in body size with a corresponding loss of 
laterality. Extant Platycercini contained a mix of left, right, and ambidextrous species. The 3 largest 
species in this tribe have reverted to the ancestral lateralized state, 1 becoming left handed, and 2 
becoming right handed. Once again we find that this switch in laterality was associated with a shift in diet, 
in this instance eating seeds encased in large pods. All the small-bodied species in the Loriinae are 
nonlateralized and specialize on eating small seeds and blossom. The fact that these smaller bodied 
species lost their laterality suggest that maintenance of laterality may incur a cost of some sort, although 
it is difficult to determine what that might be. Alternatively laterality may be lost by random drift in the 
absence of selection. 

The relationship between body size and the direction of laterality illustrates that parrots under a certain 
size are nonlateralized. With the exception of a single species (the galah), every species examined under 
32 cm in length was nonlateralized (Figure 2). This relationship between laterality in foot preference is 
further confirmed by analysis of the strength of laterality where a highly significant linear relationship was 
revealed (Figure 3). Larger bodied parrots were significantly more strongly lateralized than their smaller 
bodied counterparts. This dichotomy into left- and right-handed species illustrates that natural selection is 
not directional when it comes to the pattern of laterality. That is, that the theorized fitness benefits 
associated with specializing in using one limb rather than being ambidextrous are realized irrespective of 
which hand is favored (Brown 2005; Magat and Brown 2009). This is further supported by the PGLS 
analysis found a very strong phylogenetic signal when examining the relationship between in the pattern 
of laterality and body size (α = 0.57), but the signal was substantially reduced when examining the 
relationship between the strength of laterality and body size (α > 15.5). 

When comparing those species that specialize on large seeds with those that feed on small seeds and 
blossom, we found that the former are significantly more strongly lateralized than the latter (Figure 4). 
There is no doubt that large species tend to eat larger sized food particles, but what is significant here is 
not so much the size of the food item but the package it is delivered in and the mode of foraging. Grass 
seeds are simply too small to handle so these items are grazed on by the smaller bodied species rather 
than being manipulated by the foot in coordination with the beak. In this context, laterality of foot use 
would not provide any significant fitness advantage. At the other extreme, large-bodied cockatoos perch 
in a tree and extract seeds from seedpods by holding the pod in one hand and using a number of 
coordinated foot–beak actions (Homberger 2003). Because the eyes of parrots are laterally positioned, 
they often engage one eye to view the seedpod while they hold it in the corresponding foot and extract 
the seeds  with  their powerful  beaks. It  is likely,  therefore,  that footedness is a  symptom  of  cerebral  



 

Figure 1. Phylogeny of the 
Australian Psittaciformes 
showing the distribution of 
hand preferences across the 
23 species examined. Blue 
lines indicate nonlateralized 
species (30–70% left-hand 
preference), red lines 
indicate right-hand 
preferences (< 30% left-hand 
use) at the species level, 
and green lines are left 
footed (> 70% left hand use). 
A: shows significant shifts 
in both the strength (vertical 
arrows) and direction 
(horizontal arrows) of 
laterality; B: shows 
significant shifts in body 
size. 

 



lateralization where the hemisphere responsible for analyzing information about food determines which 
eye is used to view potential food items, which in turn determines which foot is used for the task (Brown 
and Magat 2011). There is certainly evidence that laterality evolved long before the emergence of limbs 
(e.g., fish; see review by Bisazza and Brown 2011). Thus, foot preferences are probably a reflection of 
the associated specialization of the contralateral brain hemisphere used to differentiate potential food 
from nonfood items (Gunturkun et al. 2000; Rogers 2000). An alternative, but not mutually exclusive 
hypothesis relates to the fact that large-bodied cockatoos rarely feed on the ground and thus must perch 
on one foot in the trees while foraging (Joseph 1988). It is likely that the choice of perching foot is also a 
symptom of the hemisphere dominating food discrimination processing. It is interesting to note that there 
is some evidence in other species of birds that laterality of foot use is related to the control of posture 
(Tommasi and Vallortigara 1999). 

 

 

Figure 2. The relationship between body size and the foot preference. Green dots represent species that are 
left footed, blue dots represent nonlateralized species, and red dots represent right-footed species. 

If one examines the distribution of body size within the various parrot clades, it is immediately apparent 
that body size increases as one moves from the little lorikeet (Glossopsitta pusilla, Loriinae) at just 15 cm 
in length, to the palm cockatoo (Probosciger aterrimus, Cacatuidae) reaching over 60 cm in length. 
Although our regression analyzing the relationship between the strength of laterality and the body size 
revealed a very significant association, the data this analysis is based on is not strictly independent from 
an evolutionary perspective because the various species are related to one another by descent to varying 
degrees. The results of phylogenetic independent contrasts analysis revealed no significant relationship 
between body size and either the strength or pattern of laterality. It may be that a small number of early 
evolutionary divergences deep within the phylogeny—where shifts in body size and laterality were 
correlated—underlies the strong correlation in these traits among present day species. One must bear in 
mind that the parrots date back to the early Tertiary (about 60 mya) and have shown continual adaptation 



in response to large-scale environmental changes. In an Australian context, the primary environmental 
shift was increasing aridity and associated changes in food availability, as grasses and forbs became 
increasingly pervasive in the landscape (White 1994). We propose that the shift in food availability away 
from arboreal fruits in favor of grasses may explain the loss of laterality in the smaller bodied seed eating 
species that diverged later in the evolutionary history of the Psittaciformes. 

 

Figure 3. The relationship between body size (centimeter) and the strength of laterality (Abs Laterality) in 
Australian parrots (linear regression: R2 = 0.51, P = 0.002). Values of 0 represent those species that are 
ambidextrous or contain a mix or left- and right-handed individuals. Values of 50 represent species where all 
individuals are completely left or right handed. 

 

Figure 4. The mean strength of laterality (6standard error) for parrot species that eat large seeds or small 
seeds and blossom. 



To summarize, it is apparent that the foot preferences in the Australian parrots have a reasonably high 
degree of phylogenetic conservatism. The strength of laterality, however, is also intimately related to body 
size and the corresponding foraging mode. With the exception of the galah, the Cacatuidae are strongly 
left footed, large bodied, and use their beak and preferred foot in a coordinated fashion to extract seeds 
from large seedpods. A shift to right footedness has occurred in the Psittaculini, but this was not 
associated with a change in body size or diet. This provides rather nice evidence that the theorized 
cognitive and sensory-motor benefits of laterality are realized by both strongly left- and right-handed 
species in a foraging context. The loss of laterality, or more precisely the emergence of nonlateralized 
species, was tightly linked to a historical reduction in body size and a shift to a foraging mode that does 
not require foot–beak coordination. This single shift occurred just once deep in the evolutionary history of 
these taxa. This general shift is likely associated with the emergence of grass seeds as the predominant 
food source as Australia became increasingly arid. When taken together, our results suggest that the 
pattern and strength of laterality is inherited from a common ancestor and rarely shifts significantly over 
evolutionary time because it is unlikely to influence fitness. In addition, the strength of laterality may vary 
substantially within a clade, likely in response to ecological variables because it is closely linked to fitness 
traits (Magat and Brown 2009). 

It is important to note that we have only investigated laterality in a single context, that of foraging 
behavior. Although we know that eye and foot preferences in this context are strongly correlated in most 
species of parrots (Brown and Magat 2011), there may be other contexts in which this is not the case. 
Future experiments should examine laterality in a broader range of contexts (e.g., predator and 
conspecific inspection). Such a course of action will proved further insight into how specific tasks are 
partitioned within the parrot brain and may yet illustrate further ecological or social factors that have 
shaped the evolution of cerebral lateralization in vertebrates. 

 

FUNDING 

This project was funded by Macquarie University and the Australian Research Council (DP0770396). 

 

Thanks to the large number of parrot breeders and zoos that allowed us to work with their birds. 

 

REFERENCES 

Bisazza A, Brown C. 2011. Lateralization of cognitive function in fish. In: Brown C, Laland KN, Krause J, 
editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell. p. 300–324. 

Bisazza A, Cantalupo C, Robins A, Rogers LJ, Vallortigara G. 1996. Right-pawedness in toads. Nature. 
379:408. 

Bisazza A, Dadda M. 2005. Enhanced schooling performance in lateralized fishes. Proc R Soc Lond Ser 
B Biol Sci. 272:1677–1681. 

Bisazza A, Facchin L, Vallortigara G. 2000. Heritability of lateralization in fish: concordance of right-left 
asymmetry between parents and offspring. Neuropsychologia. 38:907–912. 

Brown C. 2005. Cerebral lateralisation, social constraints and coordinated anti-predator responses. 
Behav Brain Sci. 28:591–592. 

Brown C, Braithwaite VA. 2005. Effects of predation pressure on the cognitive ability of the poeciliid 
Brachyraphis episcopi. Behav Ecol. 16:482–497. 



Brown C, Gardner C, Braithwaite VA. 2004. Population variation in lateralised eye use in the poeciliid 
Brachyraphis episcopi. Proc R Soc Lond Ser B Biol Sci (Suppl). 271:S455–S457. 

Brown C, Magat D. 2011. Cerebral lateralisation determines hand preferences in Australian parrots. Biol 
Lett Online Early. doi:10.1098/ rsbl.2010.1121. 

Brown C, Western J, Braithwaite VA. 2007. The influence of early experience on, and inheritance of, 
cerebral lateralization. Anim Behav. 74:231–238. 

Byrne RA, Kuba M, Griebel U. 2002. Lateral asymmetry of eye use in Octopus vulgaris. Anim Behav. 
64:461–468. 

Casey MB, Karpinski S. 1999. The development of postnatal turning bias is influenced by prenatal visual 
experience in domestic chicks (Gallus gallus). Psychol Rec. 49:67–74. 

Corballis MC. 2002. From hand to mouth: the origins of language. Princeton (NJ): Princeton University 
Press.  

Corballis MC. 2009. The evolution and genetics of cerebral asymmetry. Philos Trans R Soc B Biol Sci. 
364:867–879.  

Crow TJ, Crow LR, Done DJ, Leask S. 1998. Relative hand skill predicts academic ability: global deficits 
at the point of hemispheric indecision. Neuropsychologia. 36:1275–1282. 

Dadda M, ZandonĀ E, Agrillo C, Bisazza A. 2009. The costs of hemispheric specialization in a fish. Proc 
R Soc B Biol Sci. 276: 4399–4407. 

Friedmann H, Davis M. 1938. Left-footedness in parrots. Auk. 55: 478–480. 
Ghirlanda S, Frasnelli E, Vallortigara G. 2009. Intraspecific competition and coordination in the evolution 

of lateralization. Philos Trans R Soc B Biol Sci. 364:861–866. 
Gunturkun O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A, Skiba M. 2000. Asymmetry pays: 

visual lateralization improves discrimination success in pigeons. Curr Biol. 10:1079–1081. 
Güven M, Elalmiş DD, Binokay S, Tan U. 2003. Population-level right-paw preference in rats assessed by 

a new computerized food-reaching test. Int J Neurosci. 113:1675–1689. 
Harris LJ. 1989. Footedness in parrots: three centuries of research, theory, and mere surmise. Can J 

Psychol. 43:369–396. 
Homberger DG. 2003. The comparative biomechanics of a prey-predator relationship: the adaptive 

morphologies of the feeding apparatus of Australian Black-Cockatoos and their foods as a basis 
for the reconstruction of the evolutionary history of the Psittaciformes. In: Bels VL, Gasc J-P, 
Casinos A, editors. Vertebrate biomechanics and evolution. Oxford: BIOS Scientific Publishers. p. 
203–228. 

Hook MA, Rogers LJ. 2000. Development of hand preferences in marmosets (Callithrix jacchus) and 
effects of ageing. J Comp Psychol. 114:263–271. 

Hopkins WD, Cantalupo C. 2005. Individual and setting differences in the hand preferences of 
chimpanzees (Pan troglodytes): a critical analysis and some alternative explanations. Laterality. 
10:65–80. 

Joseph L. 1988. Food holding behaviour in some Australian parrots. Corella. 13:143–144. 
Lindsey T. 1998. Parrots of Australia. Sydney (Australia): New Holland Publishers. 
Magat M, Brown C. 2009. Laterality enhances cognition in Australian parrots. Proc R Soc B Biol Sci. 

276:4155–4162. 
Marchant LF, McGrew WC. 1996. Laterality of limb function in wild chimpanzees of Gombe National Park: 

comprehensive study of spontaneous activities. J Hum Evol. 30:427–443. 
Martins EP. 2004. COMPARE. Version 4.6b. Computer programs for the statistical analysis of 

comparative data. Bloomington (IN): Department of Biology, Indiana University; [cited 2010 
September 20]. Available from: http://compare.bio.indiana.edu/. 

Martins EP, Hansen TF. 1997. Phylogenies and the comparative method: a general approach to 
incorporating phylogenetic information into the analysis of interspecific data. Am Nat. 149:646–
667. 



McGrew WC, Marchant LF. 1997. On the other hand: current issues in and meta-analysis of the 
behavioral laterality of hand function in nonhuman primates. Am J Phys Anthropol. 104:201–232. 

McNaughton M. 2002. Australian parrots and finches. Seaford (Victoria): Bluestone Press. 
Meguerditchian A, Vauclair J, Hopkins WD. 2010. Captive chimpanzees use their right hand to 

communicate with each other: implications for the origin of the cerebral substrate for language. 
Cortex. 46:40–48. 

Papademetriou E, Sheu C-F, Michel GF. 2005. A meta-analysis of primate hand preferences, particularly 
for reaching. J Comp Psychol. 119:33–48. 

Rogers LJ. 1980. Lateralisation in the avian brain. Bird Behav. 2:1–12. 
Rogers LJ. 2000. Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang. 

73:236–253. 
Rogers LJ. 2009. Hand and paw preferences in relation to the lateralized brain. Philos Trans R Soc B Biol 

Sci. 364:943–954. 
Rogers LJ, Vallortigara G. 2008. From antenna to antenna: lateral shift of olfactory memory recall by 

honeybees. PLoS One. 3:e2340. 
Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. 

Evolution. 55:2143–2160. 
Schweizer M, Seehausen O, Güntert M, Hertwig ST. 2010. The evolutionary diversification of parrots 

supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. 
Mol Phylogenet Evol. 54:984–994. 

Symonds MRE, Tattersall GJ. 2010. Geographical variation in bill size across bird species provides 
evidence for Allen’s rule. Am Nat. 176:188–197. 

Tommasi L, Vallortigara G. 1999. Footedness in binocular and monocular chicks. Laterality. 4:89–95. 
Vallortigara G. 2000. Comparative neuropsychology of the dual brain: a stroll through animals’ left and 

right perceptual worlds. Brain Lang. 73:189–219. 
Vallortigara G, Rogers LJ. 2005. Survival with an asymmetrical brain: advantages and disadvantages of 

cerebral lateralization. Behav Brain Sci. 28:575–633. 
Walker SF. 1980. Lateralization of functions in the vertebrate brain: a review. Br J Psychol. 71:329–367. 
White ME. 1994. After the greening-the browning of Australia. Kenthurst (Australia): Kangaroo Press. p. 

288. 
Zentall TR. 2004. Action imitation in birds. Learn Behav. 32:15–23. 


	The Evolution of Lateralized Foot Use in Parrots: A Phylogenetic Approach
	Recommended Citation

	tmp.1463082245.pdf.6L4xK

