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ABSTRACT 

Variation in the structural complexity of a habitat is known to have significant affects on the evolution of 
different populations and can shape behavior, morphology, and life-history traits. Here, we investigated 
whether habitat complexity influences a species’ capacity for spatial learning and cue choice by 
comparing the performance of 4 goby species from 2 contrasting habitats in a spatial task. Gobies were 
collected from dynamic, homogenous sandy shores and stable, spatially complex rock pool habitats. We 
trained fish to use a T-maze to find a hidden reward and asked whether they used local visual landmarks 
or body-centered methods for orientation (i.e. turn direction) to do so. It was expected that fish from rock 
pools would learn the spatial task much faster and use different orientation cues than fish from sandy 
shores. We found that rock pool species learnt the location of the reward arm much faster, made fewer 
errors and used both types of cues available (visual landmarks and turn direction) to locate the reward, 
whereas sand species relied on turn direction significantly more than plant landmarks to orientate. The 
results of this study provide support for the hypothesis that the spatial complexity of habitats in marine 
environments has a significant effect on the evolution of fish cognition. 

 

 

Introduction 

It is well understood that the environment that an animal inhabits has a major impact on the evolution and 
development of its morphology, life-history characteristics and behavior (Brown and Braithwaite 2005). 
However, it has only been within the last 20 years that the role the environment plays in shaping learning 
ability and memory has actually began to receive the attention it deserves (Healy and Braithwaite 2000). 
Researchers are now interested in exploring the possibility that learning and memory are specialized to 
suit the specific needs of a species habitat and way of life (Balda et al. 1998; Brown and Braithwaite 
2005). Enhanced spatial memories have been correlated with increased size in certain brain areas (i.e. 
telencephalon) in a number of species. For example, food storing birds and rodents possess a 
significantly larger hippocampus and a greater spatial memory capacity than do closely related species 
that do not cache food items (Shettleworth 2003; Vander Wall and Jenkins 2003; Lucas 2004; Healy et al. 
2005). Likewise, larger telencephalons have been noted to occur in animals that live in spatially complex 



habitats such as coral reefs (Kotrschal et al. 1988; Marchetti and Nevitt 2003). Central to these 
comparative studies is the assumption that the maintenance, operation and production of the neural 
machinery required for spatial learning and memory is energetically costly and thus should only be 
invested in by animals with lifestyles and ecologies that demand it (Odling-Smee et al. 2008). 

Although the links between habitat complexity, brain development and spatial learning ability have been 
reasonably well studied in terrestrial taxa, far less is known about these relationships in aquatic systems, 
and especially in marine environments. Numerous fish species live in structurally complex and changing 
habitats, thus it is expected that they should also display reasonable spatial learning and memory 
capabilities. Spatial complexity and stability within a habitat affects the speed at which fishes learn, the 
duration of these memories, and the type of spatial cues they use to orientate (Mackney and Hughes 
1995; Brown 2003; Odling-Smee and Braithwaite 2003; Odling-Smee et al. 2008). Furthermore, a 
species’  tendency to focus on certain cues or to learn certain associations is also likely shaped by natural 
selection. In this way, animals are less likely to pay attention to untrustworthy or unhelpful sources of 
information, reducing the risk of wasting time processing unneeded information and making potentially 
costly mistakes. Brown and Braithwaite (2005) found that Panamania bishops (Brachyraphis episcopi) 
from habitats of low-predation pressure made fewer errors, solved the spatial task much faster and 
navigated more actively within the maze, than fish from high-predation sites. Furthermore, they found that 
fish collected from more stable rivers relied on local landmarks to navigate, whereas fish from less stable 
rivers relied on extra-maze cues. 

Further support for the theory that spatial learning abilities are ecologically driven comes from studies on 
2 lake dwelling sympatric species of 3-spined stickleback (Gasterosteus aculeatus) by Odling-Smee et al. 
(2008). Reproductively isolated “benthic” and “limnetic” sticklebacks were trained to locate a goal in 
a T-maze using either turn direction or plant landmarks. Despite using similar types of spatial cues, 
benthics learned the task almost twice as quickly and made fewer errors than did limnetics (Odling-Smee 
et al. 2008). Benthic species live within the spatially structured littorial zone, where they feed mainly on 
invertebrates within the vegetation and sediments and thus may require better spatial memories; whereas 
limnetic species live in the comparatively homogeneous open water column where they feed 
predominately on plankton. Studies of river and pond dwelling sticklebacks revealed that fish from pond 
habitats relied more heavily on landmarks to orientate than did fish from rivers, which were more likely to 
use a body-centered algorithm (series of turns) to orientate (Girvan and Braithwaite 1998; Odling-Smee 
and Braithwaite 2003). Landmarks are likely to be unstable and thus unreliable as directional cues in 
turbulent fast flowing rivers but are likely to be highly stable in ponds. It may be that the reliability of cues 
is more important than their availability in determining the preferred cues to use in spatial learning. 
Mackney and Hughes (1995), showed that closely related stickleback (Gasterosteidae) species obtained 
from more changeable habitats (i.e. estuarine and marine), displayed a shorter memory for foraging skills, 
whereas freshwater populations obtained from stable landlocked ponds, displayed longer memory for 
foraging skills. 

The family Gobiidae consists of thousands of phenotypically diverse species inhabiting a range of aquatic 
environments (Nelson 1994) making them ideal candidates for comparative analyses of spatial learning 
and memory processes. Gobies can be broadly broken up into a number of phylogenetic lineages which 
broadly correspond to the habitats that they occupy (Thacker and Roje 2011); 2 of which include species 
that occupy intertidal sandy shores and those that inhabit rock pools on rocky reefs (White 2014, Chapter 
9). These groups show extensive behavioral, habitat, and life-history differences that likely have deep 
phylogenetic origins (Thacker and Roje 2011; White 2014, Chapter 9). Such differences are likely to be 
reflected in measures of cognitive performance and the cues they use for orientation. 



The majority of fish species that inhabit sandy shores enter and leave the intertidal zone with each tide 
cycle (Gibson 1999). This sandy intertidal zone is mobile, constantly changing and relatively 
homogeneous in nature. Disturbance by wave action and tides render local visual landmarks unreliable 
indicators of location for use in orientating to resources. In this environment, fish ought to rely on 
egocentric information and or global cues (e.g. wave direction, location of shore) for orientation and long-
term memory formation of particular locations is likely to be less valuable. Intertidal rock pools on the 
other hand are stable, structurally complex habitats that retain water at low tide acting as refuges for 
intertidal fish (Gibson 1982; Silberschneider and Booth 2001). The fish occupying these pools tend to 
remain there for extended periods and likely become very familiar with their surroundings (White and 
Brown 2013). The large number of stable landmarks in this environment provides excellent opportunities 
to use them as orientation cues. These greatly contrasting habitats likely lead to divergent evolution of a 
huge number of physiological and behavioral traits. Here, we contrast the learning and memory 
capabilities of 2 rock pool-dwelling species and 2 sandy shore dwelling goby species, asking specifically 
whether habitat stability and spatial complexity influences the use of visual cues in orientation. By using 
multiple species from each habitat, we intend to demonstrate that there is a general evolutionary 
response to living in each environment. A broader phylogenetic approach to comparative cognition such 
as this provides better insight into the selective pressures shaping cognition in the marine environment. 

The ecological cognition hypothesis predicts that natural selection would favor the evolution of enhanced 
spatial memories in rock pool-dwelling species so they can avoid the risk of becoming stranded in 
unsuitable areas due to the retreating tides and orientate within their home pools. Sandy shore species, 
by contrast, would be subject to a different suit of selective pressures because their habitat is 
homogenous, mobile and constantly changing and thus a highly developed spatial memory is less likely 
to be useful in this context and may even be a hindrance. We predicted, therefore, that gobies found in 
rock pools will use landmark cues for orientation to a greater extent than sand-dwelling species, and that 
rock pool-dwelling species will perform better in the spatial learning task than gobies found on sandy 
beaches. 

METHODS 

Study animals 

Four species of intertidal gobies of differing ecologies were tested for specific cue use during a spatial 
learning task. Two rocky intertidal species: Cocos frillgoby (Bathygobius cocosensis) and Krefft’s goby (B. 
krefftii), which were collected from rock pools at a number of rock platforms. Additionally, 2 sand-dwelling 
species: Eastern long finned goby (Favonigobius lentiginosus) and Hoese’s sandgoby (Istigobius hoesei), 
were collected form a number of sandy beaches in the Sydney region of New South Wales, Australia. 

We tested a total of 65 fish for cue use (17 Cocos frillgoby, 16 Krefft’s goby, 18 eastern longfin goby, and 
14 Hoese’s sandgoby). Fish were allowed to acclimate in the laboratory for a period of 1 month before 
testing began. They were housed in groups of 8–10 in 4 flow-through seawater aquaria (64 × 42 × 26 cm: 
70 L) held in a seawater facility. All aquaria were maintained at the same seawater flow rate (1 L/1 min−1) 
and temperature (18–22 °C), and were illuminated for 12 h each day with full spectrum UV lights. Fish 
were fed a combination of live brine shrimp (Artemia franciscana), live black worms (Lumbriculus 
variegates) and the commercial dry food “tetra color bits” every second day during the settling period. 
Three weeks before testing began fish were lightly anesthetized using a solution of 50 mg/1 MS222 
buffered with sodium bicarbonate (fish placed in a bucket containing 1.5 L solution until subdued), their 
total length was measured and they were tagged using Visible Implant Fluorescent Elsastomer tags (VIE: 



Marine Technology, Inc. 2014) to aid individual identification. Recovery from tagging is almost immediate 
and has no long-term effects on their behavior (White and Brown 2013). 

 

 

Figure 1. Diagram of the spatial learning task. Numbers indicate the sequence of start box positions for a run 
of 3 consecutive trials starting at position 1. The arrow indicates the correct route a right turn trained fish 
had to take in order to obtain food and shelter. 

 

T-maze apparatus 

The apparatus and procedures used in this experiment were based on those used by Odling-Smee and 
Braithwaite (2003) and Odling-Smee et al. (2008). Two 4-arm, cross mazes constructed from 3-mm 
polyvinyl chloride plastic (Figure 1) lined with shell grit were submerged into aerated seawater to a depth 
of 10 cm within a rectangular pool (1.3 m × 0.85 m and 0.2 m high) connected to a flow-through system. 

A removable screen 10 cm wide and 16 cm high could be slid into runners, enabling any 1 of the 4 arms 
to be shut off to produce a T-maze. A trap door (10 × 16 cm) held by runners 8 cm from the central core 
of the T-maze was used to create the start box for each trial. Two opaque PVC partitions (10 × 16 cm) 
were positioned in the maze 10 cm from the ends of each arm. At the base of each partition was a small 
doorway (4 cm high and 2 cm wide) through which the fish could swim to reach the end of the arm. Food 
rewards were provided by placing blackworms into glass petri dishes (3 cm in diameter and 1.5 cm deep), 
which were only visible to the fish after it had passed through the doorway in the PVC partition. An 
artificial shelter, half a ceramic pot 5 cm in diameter, was also positioned behind the partition at the ends 
of each arm, to help reduce the stress caused by forcing fish that normally seek out cover into an open 
area. Therefore, fish received a double reward (food and shelter) when it entered the correct arm. If a fish 
swam into the wrong arm, trap doors (10 × 16 cm) held in grooves just behind the PVC partitions could be 
lowered in the opposite arm, preventing the fish from swimming back and reaching the food. Therefore, 
rewards were limited to fish that chose the correct arm first. Two landmarks (plastic plants) were placed in 
the maze, 1 in entrance to the correct arm just visible from the exit of the start box, and the other also in 
the correct arm just in front of the small doorway leading to the reward (Figure 1). Fish behavior was 
monitored remotely on a laptop computer connected to a web camera (Microsoft Lifecam VX-2000) 



positioned 1m above the centre of each maze. Trials were recorded directly to an external hard drive 
connected to the laptop computer. Black curtains surrounded the maze to reduce the availability of 
external maze cues and prevent disruptions created by viewers. 

Pretraining 

The function of pretraining was to allow fish to become accustomed to the maze and the start box. During 
pre-training, fish were transferred from there holding tanks to the maze via small hand nets. Within the 
maze no shelters or landmarks were present, and petri dishes containing large amounts of blackworm 
were placed in both arms of the maze. From pretraining onwards fish were only ever fed when performing 
trials inside the maze. Groups of 8 fish were given free access to the entire T-maze for ten 24 h periods 
alternated with 24 h in their home tanks, both mazes were used simultaneously. During each pretraining 
session, we randomly selected a start box with the restriction that no start box was used more than twice 
in a row. To minimize handling effects, an opaque cover was placed over the start box for 5 min before 
each session began to allow the fish to settle. After the 5-min calming period had elapsed, the trap door 
was removed and fish were allowed to swim freely throughout both arms of the T-maze. 

Training 

Fish were given 3 training trials every second day, and we randomly chose the order in which the fish 
were trained for each day. Fish were trained to find a reward (shelter and 3 blackworms in a petri dish) in 
1 arm of the T-maze. A petri dish was also positioned in the opposite arm except that it was inverted so 
that fish could not access the reward. This ensured that fish were not using olfactory cues to orientate. To 
control for any directional bias, we trained half the fish from each species to turn left and half to turn right. 
At the beginning of each 3 trial session, we randomly selected the start box with the restriction that no 
start box was to be used twice in a row for the same fish. In this manner, fish could not rely on extramaze 
cues for orientation. A single fish was placed into the start box and given 5 min to settle before the cover 
and trap door were removed and the fish was allowed access to the maze. We recorded the arm the fish 
started in, time taken for the fish to leave the start box and to enter an arm, and which arm the fish chose 
first. Arm entry was determined to have taken place when the base of the caudal fin had passed through 
the doorway in the PVC partition. To complete a trial correctly, fish had to swim through the PVC partition 
into the arm containing the reward (food and shelter) before it entered the unrewarded arm. Once fish had 
consumed the reward and/or entered the shelter they were left for a further 3 min and the trial terminated. 
If the fish chose the unrewarded arm it was still able to swim into the opposite arm to obtain the food and 
shelter reward, but this trial was scored as “incorrect”. If the fish did not enter an arm after 10 min the trial 
was terminated. Once a trial had been terminated, we encouraged fish to swim into the rewarded arm (i.e. 
if they had left it or not entered it during the trial), lowered the trap door, and then manipulated the maze 
so that the previously rewarded arm became the start box for the next trial. This ensured that fish rotated 
around the arms of the maze: clockwise (for left turners) and anticlockwise (for right turners), allowing us 
to train individuals using blocks of 3 trials, with minimal handling between trials. 

For the first 12 trials, trap doors in the arms of the T-maze were removed allowing fish access to both 
ends. However, for the remainder of the experiment, once a fish had entered the hole in the partition of 1 
arm, the trap door was lowered over entrance to the opposite arm. Therefore each fish was only 
rewarded if they chose the “correct” arm first. To ensure that each individual had learned the task, fish 
had to perform 9 correct trials out of 10. Fish were trained until they had reached this criterion or for a 
total of 45 trials after which they were given a probe trial. 

 



Probe trials 

Once fish reached criteria, 3 probe trials were conducted interspersed by additional post criterion training 
trials. Between any 2 probe trials fish needed to perform a minimum of 4 correct trials out of 5 consecutive 
trials in order to reach criterion. These probe trials tested individual preferences for spatial cues by 
placing the 2 possible orientation cues (turn direction and landmarks) in conflict with one another by 
moving the plant landmark. For example fish trained to turn left would now find landmarks positioned in 
the right arm of the maze (opposite side from that of training). By observing which arm the fish entered, it 
was possible to determine which cue the fish used to orientate. During probe trials, the food and shelter 
rewards were placed at both arms of the maze so that fish were not being punished for choosing one or 
other of the available cues. Fish were allowed to enter an arm and feed or hide in the shelter for a period 
of 3 min before they were removed from the maze. 

Statistical analysis 

In most cases, the data were normally distributed, but where necessary nonparametric statistics were 
used. To test if learning task performance was affected by species differences or habitat type, we used an 
general linear model with a binomial error structure design with number of trials to reach criteria (probe 
trial 1), percentage of errors to criteria (probe trial 1), or ability to learn (i.e. did the fish reach probe trial 
stage before the 45 trial cut off or not) as the dependent variable, and direction fish was trained to turn 
(left or right) and habitat or species as fixed factors. Size was not included in any of the above 
comparative analyses because it is confounded by species size differences. Thus we analysed size at a 
species level for each of the 4 performance measures using regressions split by the direction in which fish 
were trained to turn. 

Results of all 3 probe trials were combined (i.e. total number of probe trials where fish chose to use 
landmarks) and we used a chi-square test to determine whether rock pool fishes and sand fishes differed 
in the types of spatial cues used (i.e. turn direction or landmarks) during the probe trials. This test 
questioned whether the proportion of rock pool fishes using landmarks was different to that of the sand 
fishes, we also performed the chi-square test for each species separately. All statistical analyses were 
performed using StatView Version 5·0·1 (SAS Institute Inc. 1998) and Excel version 12.2.3 (Microsoft, 
2008). 

RESULTS 

Learning task performance 

Analyses of the number of trials to reach criteria (the first probe trial) detected a strong effect of species 
and a strong species × turn direction interaction, but no effect of turn direction (GLM: Species: F3,58 = 
5.04, P = 0.004; Turn direction: F1,58 = 1.30, P = 0.26; Species × Turn direction: F3,58 = 3.59, P = 0.021). 
Both rock pool species, Cocos frillgoby and Krefft’s goby, made it to criteria (probe trial stage) in 
significantly fewer trials than the sand species, eastern longfin goby (P ≤ 0.05 in both cases). Much of the 
variability in learning between species was related to an interaction between size and underlying turn 
biases. Regression analyses of learning at the species level revealed a correlation between body size 
and turn direction for all species. In both rock pool species and one sand species larger fish (TL: 4–6 cm) 
trained to turn left learnt the location of the reward arm faster than smaller (TL: 2–3.5 cm) left turn trained 
fish (Regressions: Cocos frillgoby: R2 = 0.569, F1,8 = 9.244, P = 0.019, Krefft’s goby: R2 = 0.517, F1,7 = 
6.43, P = 0.044, Hoese’s sandgoby: R2 = 0.9, F1,4 = 27.27, P = 0.014). Although the opposite was true for 
the sand species eastern longfin goby; smaller fish trained to turn left learnt the location of the reward arm 
much faster than larger left trained fish (Regression: R2 = 0.65, F1,8 = 13.00, P = 0.008). Although there 



were no significant differences in learning noted between small and large fish trained to turn right in the 
maze (P > 0.05 in all cases). Over all, rock pool species required marginally fewer trials to reach criteria 
than sand dwelling species (GLM: Habitat: F1,60 = 3.602, P = 0.062) (Figure 2), however, we found no 
effect of turn direction and no habitat × turn direction interaction on the number of trials to fish required to 
reach the first probe trial (P > 0.05 in both cases). 

 

Figure 2. Mean (±SE) number of trials required by rock pool and sand-dwelling fish to reach criteria. 

 

Figure 3. The percentage (±SE) of errors made by rock pool and sand-dwelling fish before reaching criteria. 

 

Analyses of the percentage of errors fish made before reaching the first probe trial detected a strong 
effect of species, but no effect of turn direction or an interaction between the 2 variables (G LM: species: 
F3,54 = 9.22, P < 0.001; Turn direction: F1,54 = 0.01, P = 0.91; Species × Turn direction: F3,54 = 0.13, P = 
0.94). Eastern longfin gobies made the most errors followed by Hoese’s sandgoby and the 2 rock pool 
species (Krefft’s gobies and Cocos frillgoby) made the fewest errors. Regression analyses of the 
percentage of errors made by fish revealed that there was no correlation between body size and turn 
direction for all species except the sand species eastern longfin goby where smaller fish (TL: 3–4cm) 
made fewer errors than larger fish (TL: 4.5–6) (Regression: R2 = 0.612, F1,17 = 25.20, P < 0.001). Over all 
sand dwelling species made significantly more errors before reaching the first probe trial than did rock 



pool species (GLM: Habitat: F1,58 = 16.23, P < 0.001) but once again there was no effect of turn direction 
and no effect of the interaction between habitat and turn direction (GLM: Turn direction: F1,58 = 0.012, P = 
0.91; Species × Turn direction: F3,58 = 0.003, P = 0.96) (Figure 3). 

 

 

Figure 4. Mean (±SE) proportion of fish that made it to probe trial stage based on their own learning ability 
(i.e. before the 45 trial cut off) for rock pool and sand-dwelling species. 

 

A total of 8 eastern longfin goby, 4 Hoese’s sandgoby, 3 Cocos frillgoby, and 3 Krefft’s goby failed to 
make it to criteria before the 45 trial cut off. The GLM found no effects of species or turn direction or 
habitat × turn direction interaction on fishes ability to make it to probe trial stage before the 45 trial cut off 
(P > 0.05 in all cases). However, results of Fisher’s PLSD analysis revealed a marginal difference 
between the sand species eastern longfin gobies and the rock pool species Cocos Frillgoby (P = 0.089). 
In total, 6 individuals from the rock pool species and 12 individuals from the sand species failed to make it 
to criteria before the 45 trial cut off. Habitat origins had significant effects on fishes learning abilities; sand 
species were significantly less likely to make it to probe trial stage before the 45 trial cut off than were 
rock pool species (GLM: Habitat: F1,68 = 4.17, P = 0.045) (Figure 4). 

There was no effect of turn direction or a habitat × turn direction interaction on fishes ability to make it to 
probe trial stage before the 45 trial cut off (GLM: Turn direction: F1,68 = 1.3, P = 0.26; Habitat × Turn 
direction: F1,68 = 1.1, P = 0.30). 

Spatial cue use 

When analysed separately, all species were found to use a combination of both cues (plant landmark and 
turn direction) to orientate (Chi-square test χ2

2: Cocos frillgoby: P = 0.67, Krefft’s: P = 0.11, eastern 
longfin goby: P = 0.17). However, there was a slight trend for the sand-dwelling species, Hoese’s 
sandgoby, to use turn direction cues for orientation, but this was not statistically significant (Chi square 
test χ2

2: P = 0.086). When combined into habitat groups, it was found that rock pool dwelling species 
used a combination of the 2 available cues (plant landmark and turn direction) to orientate, whereas 
sand-dwelling species relied more readily on turn direction (Chi-square test χ2

2: rock pool P = 0.132; sand 
P = 0.033) (Figure 5). 



 

Figure 5. Percentage (±SE) of rock pool and sand-dwelling fish using plant landmarks and turn direction for 
orientation during probe trials. 

 

Discussion 

Fish often live in a wide variety of complicated and changing habitats and are thus likely to have 
developed a range of learning and memory abilities to survive in them. The results presented here add to 
a growing body of evidence indicating that both learning capacity and navigation techniques vary 
considerably between species occupying contrasting environments. As we predicted, rock pool species 
learnt the location of the reward much faster and made fewer errors during training than did sand-dwelling 
species. Furthermore, rock pool species used a combination of the 2 available cues (plant landmarks and 
turn direction) to orientate which likely highlights the importance of locating the position of stable refuges. 
Sand species, in contrast, were more likely to use turn direction than plant landmarks to orientate. We 
would like to make it clear that we do not rule out the possibility that sand species can also use landmarks 
for orientation, it does appear, however, that their preference for body-centered methods of orientation 
(i.e. series of turns) overshadows the use of other cues. A partner study also found that rock pool species 
relied on both local and extramaze (global) cues, whereas sand species showed a preference for extra-
maze cues (White 2014, chapter 6). Studies exploring the spatial learning abilities of animals have often 
observed that when a navigational problem can be solved in more ways than one then multiple orientation 
strategies will be utilized in conjunction with one another (Etienne et al. 1990; Able 1993; Collett and Zeil 
1998; Odling-Smee et al. 2008). 

Within spatially complex rock pool habitats, fish avoid predators by learning and remembering the spatial 
position of safe refuges using the abundant, stable landmarks (Markel 1994; Burt de Perera and Guilford 
2008). This type of information is likely to be of much less importance to sand species, which respond to 
danger by displaying quick zigzag escape trajectories and burying under the sand (Whitely 1932; Murdy 
and Hoese 1985). Although sand-dwelling species do use refuges if they are available, their presence 
and position are always transient, and therefore information concerning their whereabouts is unlikely to 
be retained. Moreover, in order to access rewards in the maze, fish were required to swim through a small 
door. The area behind this door was often slightly darker than the rest of the maze and as a result may 
have been more attractive to the rock pool dwelling species that are used to hiding in crevasses and 
under rocks (White and Brown 2013; White 2014, chapter 2). Dodd et al. (2000) demonstrated that 



shannies are highly attracted to dark areas as they may indicate the position of shelter such as a crevice 
or rocky overhang. In contrast, sand species observed in this study did not appear to notice the door until 
much later in the training period, instead they swam up and down the arms of the maze or remained in 
the start box hiding under the shell grit. Nevertheless, we expect that hunger should have equally 
motivated these species to locate the reward arm. 

The differences in learning performance and spatial cue preferences exhibited by rock pool and sand 
species may have arisen due to genetics, differences in experience, or a combination of the 2. All 4 goby 
species are genetically distinct from one another, however rock pool species are more closely related to 
one another than they are to sand species and vice versa (Thacker and Roje 2011; White 2014, Chapter 
9). Molecular evidence also suggests that a single species colonized each habitat type and then over time 
speciation occurred (Thacker and Roje 2011; White 2014, Chapter 9). Therefore, it is possible that 
learning, cue choice and habitat preference of the species studied here may have evolved in parallel with 
their phylogeny. That is rock pool and sandy bay environments may be genetically selecting for specific 
and divergent spatial learning abilities and cue preferences. Differences in prey capture tactics may also 
select for differing spatial learning abilities and cue use, e.g., rock pool species actively search for mobile 
prey items, such as amphipods, brachyurans, isopods, and polychaetes (Randall and Goren 1993), so 
they may rely on spatial learning to a greater extent (i.e. must remember complex environmental features) 
in order to return to key areas where these small invertebrates commonly hide. Whereas sand species 
feed by sifting sand through their gill rakers to filter out any infauna (Myers 1999), sitting stationary and 
sucking in mouthfuls of sand is unlikely to require much in the way of neural machinery. 

Alternatively, learning ability and preference for a particular cue may be acquired during an early phase of 
development (Odling-Smee and Braithwaite 2003) or via continual reinforcement through use. For 
example, experiments on homing pigeons demonstrated that birds exposed to a full view of the natural 
landscape during development were more likely to use visual landmarks to orientate than their siblings 
reared in a loft with opaque windows (Braithwaite and Guilford 1995). In the case of this study, 
experience of a less stable environment during early ontogeny may cause individuals to rely on body-
centered methods of orientation (i.e. series of turns) to a greater extent later in life and require constant 
and prolonged exposure to spatially complex tasks before they are able to learn to retain spatial 
information. Furthermore, rock pool species have more experience with spatially complex habitats, and in 
turn they may learn subsequent spatial tasks more readily. It may be that when fish recruit to their 
perspective habitats, they choose orientation cues and learning strategies that are appropriate to that 
location. Future experiments could test this by rearing fish in contrasting environments and observing the 
development of their orientation strategies. 

Our results are consistent with the expectation that species experience a trade-off between the costs and 
benefits of investing in learning and memory abilities (Dukas 1999). The maintenance, operation, and 
production of the neural machinery required for spatial learning and memory is likely to involve quite high 
fitness and energetic costs (Mery and Kawecki 2003, 2004, 2005; Odling-Smee et al. 2008), which means 
that only animals with an ecological demand for spatial learning and memory should be actively investing 
in them. Although we did not test explicitly for the costs of learning here, we suggest that habitats that 
differ in spatial complexity are selecting for differing investments for spatial learning and memory abilities. 
We found that gobies living in more spatially complex habitats such as rock pools developed spatial 
memories of the T-maze arena much faster than species living in spatially simple sand habitats. Further 
support for the costs of learning can be found in a partner study that demonstrated that gobies from rock 
pool habitats had a significantly larger telencephalon, an area of the brain that has been linked to spatial 
learning ability, than gobies from sandy shores (White 2014, chapter 6). 



The results of this study indicate that turn preference and body size can also affect a species spatial 
learning. Practically, all vertebrates exhibit some form of turn biases or limb preference (Vallortigara and 
Rogers 2005; Bissaza and Brown 2011). In this context, strong turn biases interfered with the fish’s ability 
to rapidly locate the reward, similar observations were made in poeciliids (Brown and Braithwaite 2005). 
Moreover, our data indicate that body size may influence turn bias. For all species, except eastern longfin 
goby, smaller fish appeared to have a preference for making right turns, however, no turn bias was 
present in larger individuals which learnt the location of the reward faster. Others studies have also noted 
shifts in turn biases or limb preference occurring during ontogeny. For example, both parrots and humans 
tend to be ambidextrous early in development before settling on a preferred hand (Corbetta and Thelen 
2002; Brown and Magat 2011). Although we are not testing directly for laterality here (i.e. all our tests are 
cued and rewarded) our results do suggest that laterality may be influencing the gobies turning 
preference and hence making them appear slower to learn than they actually are. Future studies should 
focus on determining if these species do in fact exhibit some form of laterality by performing uncued and 
unrewarded turn preference tests in a T-maze. 
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