
WellBeing International WellBeing International 

WBI Studies Repository WBI Studies Repository 

2002 

In Search of King Solomon’s Ring: Cognitive and Communicative In Search of King Solomon’s Ring: Cognitive and Communicative 

Studies of Grey Parrots (Psittacus erithacus) Studies of Grey Parrots (Psittacus erithacus) 

Irene M. Pepperberg 
Massachusetts Institute of Technology 

Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_asie 

 Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal 

Sciences Commons 

Recommended Citation Recommended Citation 
Pepperberg, I. M. (2002). In search of king Solomon’s ring: cognitive and communicative studies of Grey 
parrots (Psittacus erithacus). Brain, Behavior and Evolution, 59(1-2), 54-67. 

This material is brought to you for free and open access 
by WellBeing International. It has been accepted for 
inclusion by an authorized administrator of the WBI 
Studies Repository. For more information, please contact 
wbisr-info@wellbeingintl.org. 

https://www.wellbeingintlstudiesrepository.org/
https://www.wellbeingintlstudiesrepository.org/acwp_asie?utm_source=www.wellbeingintlstudiesrepository.org%2Facwp_asie%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1306?utm_source=www.wellbeingintlstudiesrepository.org%2Facwp_asie%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1387?utm_source=www.wellbeingintlstudiesrepository.org%2Facwp_asie%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/82?utm_source=www.wellbeingintlstudiesrepository.org%2Facwp_asie%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/82?utm_source=www.wellbeingintlstudiesrepository.org%2Facwp_asie%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wbisr-info@wellbeingintl.org
https://wellbeingintl.org/
https://wellbeingintl.org/


In Search of King Solomon’s Ring: Cognitive and 
Communicative Studies of Grey Parrots 
(Psittacus erithacus) 
Irene M. Pepperberg 
The MIT Media Lab 

 

KEYWORDS 

birds, cognition, communication, Grey parrots 

 

ABSTRACT 

During the past 24 years, I have used a modeling technique (M/R procedure) to train Grey parrots to use 
an allospecific code (English speech) referentially; I then use the code to test their cognitive abilities. The 
oldest bird, Alex, labels more than 50 different objects, 7 colors, 5 shapes, quantities to 6, 3 categories 
(color, shape, material) and uses ‘no’, ‘come here’, wanna go X’ and ‘want Y’ (X and Y are appropriate 
location or item labels). He combines labels to identify, request, comment upon or refuse more than 100 
items and to alter his environment. He processes queries to judge category, relative size, quantity, 
presence or absence of similarity/difference in attributes, and show label comprehension. He semantically 
separates labeling from requesting. He thus exhibits capacities once presumed limited to humans or 
nonhuman primates. Studies on this and other Greys show that parrots given training that lacks some 
aspect of input present in M/R protocols (reference, functionality, social interaction) fail to acquire 
referential English speech. Examining how input affects the extent to which parrots acquire an allospecific 
code may elucidate mechanisms of other forms of exceptional learning: learning unlikely in the normal 
course of development but that can occur under certain conditions. 

 

 

Introduction 

Most studies that examine animal-human communication use species that have either a close 
phylogenetic relationship to humans, such as the great apes [e.g. see Gardner and Gardner, 1969; Sarich 
and Cronin, 1977; Miles, 1983; Premack, 1983; Savage-Rumbaugh, 1984], or that are large-brained, 
such as marine mammals [e.g., Russell, 1979; note, however, Morgane et al., 1986; see Herman, 1987]. 
Thus when I first proposed working with Grey parrots, a species evolutionarily far-removed from humans 
and with brains the size of a walnut, my colleagues generally responded with disbelief. Not only were 
parrots thought to be mindless mimics [e.g., Lenneberg, 1967] but, prior to the 1970s, researchers had 
shown that birds lacked, to any great extent, a cerebral cortex [the so-called mammalian organ of 
intelligence; e.g., Jerison, 1973], had examined few avian species other than pigeons in studies that 
concentrated primarily on topics such as delayed match-to-sample [e.g., Blough, 1959; Berryman et al., 
1963; Smith, 1967; Maki and Leuin, 1972; Roberts, 1972], and the general consensus was that avian 



abilities were inferior to those of mammals [Premack, 1978]. Moreover, several researchers [e.g., Mowrer, 
1950, 1952, 1954; Grosslight and Zaynor, 1967], using the standard operant conditioning techniques of 
their time, had tried and failed to establish any form of referential communication with mimetic birds. So 
why did I believe that I would succeed? 

I have reviewed the reasons in detail elsewhere [Pepperberg, 1999]. In brief, despite all the negative 
evidence concerning avian abilities, researchers (a) had already demonstrated striking parallels between 
the ontogeny of vocal learning in birds and humans [e.g., Marler, 1970, 1973; Nottebohm, 1970, 1976]; 
(b) provided considerable evidence that Grey parrots at least could learn the kinds of symbolic and 
conceptual tasks that are generally considered pre- or co-requisites for complex cognitive and 
communicative skills [e.g., Koehler, 1950, 1953, 1972; Mowrer, 1950, 1954; Braun, 1952; Lögler, 1959; 
Thorpe, 1964, 1974]; (c) were beginning to report behavior patterns in other parrots, such as cooperative 
alarm signaling and individual recognition [Lawson and Lanning, 1980; Levinson, 1980; Rowley, 1980] 
that, when observed in nonhuman primates, are considered evidence for human-like intelligence and 
communicative abilities [Savage-Rumbaugh, 1986]; (d) had shown that communication within psittacine 
communities seemed to be mediated by complex vocalizations, apparently learned through social 
interactions with conspecifics or other organisms [Power, 1966a,b; Nottebohm, 1970; Busnel and Mebes, 
1975; note Tenaza, 1976]; and (e) were finding information processing, vocal control and storage 
pathways in the brain that were analogous to those of humans [e.g., Cobb, 1960; Portmann and Stingelin, 
1961; Nauta and Karten, 1971; Stettner, 1974; Nottebohm, 1980; Paton et al., 1981]. Such findings 
suggested that the psychologists’ failures to achieve meaningful communication with their birds or to find 
complex cognitive processing might be a consequence of inappropriate training techniques, rather than 
any inherent lack of intelligence in their psittacine subjects, and that human-parrot communication might 
be possible. If so, such communication would be, as Griffin [1976] had proposed, a particularly powerful 
tool for assessing intelligence because it provides a simple, direct means for testing subjects. 

My research has been a test of these premises. Starting in the late 1970s, I developed techniques that 
integrated the experimental rigor of the laboratory with what little was then known about psittacine 
communication in nature; I also borrowed ideas form projects that examined the bases for human social 
learning [see reviews in Pepperberg, 1985, 1988a, 1990a, 1999]. I have used these techniques 
successfully to establish a form of interspecies communication with Grey parrots. The data demonstrate 
that at least one avian species is capable of interactive, referential communication [Pepperberg, 1999]. 
My students and I, moreover, have used the learned communication code to test the extent of the initial 
subject’s intelligence, and we have begun to replicate the research with additional Grey parrots 
[Pepperberg, 1999]. The following sections provide details of the procedures and the results. 

Materials and Methods 

All procedures used in this work were in accordance with the guidelines of the Animal Behavior Society 
and the American Psychological Association. 

Subject of the Initial Study 

The primary experimental subject, a Grey parrot named Alex, has been the focus of my studies on 
interspecies communication and avian intelligence since June, 1977. At the start of the project he was 
approximately 13 months old and had received no prior formal vocal instruction. He has free access to 
the laboratory room while trainers are present (F8 h/day), but is confined at other times to a cage and the 
desk upon which it rests. Water and a standard psittacine pellet (Harrison’s Bird Diet) are continuously 
available throughout the day; fresh fruits, vegetables, specialty nuts (cashews, almonds, walnuts), 
cereals, sprouted grains, and pasta are provided at his vocal requests; toys are used in training. 



Training Techniques 

The Model/Rival (M/R) Technique 
The primary training system, called the model/rival, or M/R technique [Pepperberg, 1981], is based on a 
protocol developed by Todt [1975], an ethologist interested in social learning in parrots. Todt’s 
procedures, in turn, derived much from the work of Bandura [1971], who studied the effects of social 
modeling on learning in humans. The M/R procedure involves three-way interactions between two 
competent human speakers and the avian student. M/R training is used primarily to introduce new labels 
and concepts, but also aids in shaping correct pronunciation; it uses social interaction to demonstrate a 
targeted vocal behavior. 

During M/R training, humans portray to the bird the types of interactive responses that are to be learned. 
A typical interaction proceeds as follows: Alex is seated on his gym, his cage, or the back of a chair, and 
observes two humans handling one or more objects in which he has already demonstrated an interest. In 
his presence, one human acts as a trainer of the second human. The trainer presents the object(s), asks 
questions about the object(s) (e.g., ‘What’s here?’, ‘What color?’, ‘What shape?’), and gives the human 
model praise and the object(s) in question as a reward for a correct answer. Disapproval for incorrect 
responses (erroneous answers that are similar to those being made by the bird at the time: unclear 
vocalizations, partial identifications, etc.) is demonstrated by scolding and temporarily removing the 
item(s) from the model’s sight (and, depending up on the angle, sometimes the parrot’s sight as well). 
Thus, the second human not only acts as a model for the parrot’s responses and as a rival for the 
trainer’s attention, but also allows the bird to observe effects of an error: The model is asked to try again 
or talk more clearly if the response was (deliberately) incorrect or garbled, thereby allowing a bird to 
observe ‘corrective feedback’ [Goldstein, 1984; Vanayan et al., 1985]. A bird is included in interactions 
and rewarded for successive approximations to a correct response; thus training is adjusted to its level. 

Unlike the modeling procedure developed by Todt [and several other researchers, review in Pepperberg 
and Sherman, 2000], our protocol also involves repeating the interaction while reversing the roles of the 
human trainer and model, and occasionally includes the parrot in the interactions. We thus demonstrate 
that the interaction is indeed a ‘two-way street’: that one person is not always the questioner and the 
other always the respondent, and that the procedure can be used to effect changes in the environment 
[Pepperberg, 1981]. Inclusion of role reversal in M/R training appears to counteract what would be, for our 
project, the drawbacks associated with Todt’s method: Todt’s birds, whose trainers always maintained 
their respective roles, would not respond to anyone other than the human who posed the questions. In 
contrast, Alex responds to, interacts with, and learns from all of the trainers with whom he comes in 
contact. 

An important feature of the M/R technique is the consistent, exclusive use of intrinsic reinforcers – that is, 
as we teach Alex labels for particular items, his reward for producing the correct label is the object to 
which the label or concept refers. Thus, if Alex correctly identifies a cork, that is what he receives. This 
procedure insures, at all times, and at every interaction, the closest possible correlation of the label or 
concept to be learned and the object or task to which it refers [Pepperberg, 1981]. 

In contrast, programs such as Mowrer’s [1950] relied on extrinsic rewards. Thus, on the few occasions 
when his subjects correctly labeled food or nonfood items, or made appropriate responses to various 
specific commands, they received a single, particularly favored food that neither directly related to, nor 
varied with, the label or concept being taught. I believe that extrinsic rewards may delay label or concept 
acquisition by confounding the label of the exemplar or concept to be learned with that of the food reward 
[Pepperberg, 1981; see also Greenfield, 1978; Miles, 1983]. Alex therefore never receives extrinsic 



rewards. Note that use of intrinsic rewards also demonstrates the functionality of the label: Initially, use of 
the label is a means to obtain a desired object. 

On occasion, Alex may receive a more general form of reward: Because we sometimes have difficulty 
maintaining his interest in the set of objects that are being used to train a particular concept, we taught 
him to use ‘I want X’ [i.e., to separate labeling and requesting; Pepperberg, 1988b] so that he may be 
rewarded with the right to request vocally a more desirable item than the one he has identified. Such a 
protocol provides some flexibility but maintains the referentially of the reward: Alex will never, for 
example, automatically receive a slice of banana when he identifies a cork. The banana must specifically 
be requested (‘I want banana’), and trainers will not respond to such a request until there appropriate 
prior task is completed. Note that training the use of ‘want’ provides two interesting advantages: First, 
such a protocol could eventually be used to reward Alex for responding to queries about objects he could 
not be given, such as trees. Second, once a bird uses ‘want’ appropriately, trainers are able to distinguish 
incorrect labeling from appeals for other items; that is, during a test a bird that did not use ‘want’ could 
simply be asking for a more desired object rather than be making an error. Test scores might thus decline 
for reasons unrelated to a bird’s competence [Pepperberg, 1990b]. 

Testing Procedures 

To evaluate what the parrot has learned we regularly administer tests that simultaneously include 
questions on all of the tasks that have been trained [Pepperberg, 1981]. Test questions for each topic 
therefore occur only on average one to four times per week. Our detailed test procedure can be found in 
any of several prior publications [e.g., Pepperberg, 1981, 1990a, b, 1999]. But, because confidence in our 
results requires confidence in both our controls against cuing and our method of scoring Alex’s 
responses, I will review those aspects of our procedures in some detail. 

Precautions Against Trainer-Induced Cuing 
Two procedures are used to avoid this type of cuing [Pepperberg, 1981, 1990a, b, 1999]. One procedure 
is a design that prevents either the subject or the principal trainer from predicting which questions (or 
answers) will be tested on a given day. To construct a test, the trainers proceed as follows: The principal 
trainer first lists all of the possible questions about objects or combinations of objects for the topics that 
are to be examined. A student who will not administer a test then arranges the objects that are involved in 
the question, e.g., forms the pairs (for questions on same/different) or collections (for numerical and 
comprehension questions), and randomly orders all the questions. The principal trainer then acts as a 
‘blind’ evaluator (see below) while other students present questions intermittently during training sessions 
on current (and thus unrelated) topics over the course of several days until all the questions on the test 
have been presented. At the same time that we were conducting the studies on number concepts and 
same/different, for example, we were training and testing additional labels [Pepperberg, 1987a, b, 1988c], 
training photograph recognition, and testing object permanence [Pepperberg and Kozak, 1986]. Test 
questions such as ‘How many?’ were thus as likely to occur during training sessions on photograph 
recognition as during tests on ‘Where’s the key?’ The opportunity for any particular object or collection of 
objects to appear on a test might occur only once per week and therefore could not be predicted. A 
second precaution against cuing is to ensure that trials on a particular topic are conducted by students 
who had never trained the parrot on that topic. The same student could, however, test several other 
topics, so that the presence of a specific student would not serve as a cue as to which particular topic 
would be tested [Pepperberg, 1981].  

Precautions Against ‘Expectation Cuing 
Intermingling different types of questions (e.g., ‘How many?’, ‘What’s this?’, ‘What color?’, ‘What’s 
same?’, ‘What’s blue?’) on tests or during training on other topics not only prevents cuing by the trainers, 



but also ensures against ‘Expectation cuing’ that may occur when a subject ‘expects’ questions to 
concern a single topic. If a subject uses contextual information in single-topic tests to limit its responses to 
a small subset of its repertoire, the range of knowledge being tested will be much more limited than the 
experimenter assumes, and this limit could enable the subject to perform at a level higher than would 
otherwise be justified by its real knowledge of the topic. Alex, however, is never tested exclusively on 
questions on a single topic (e.g., number labels) in one session, and, more importantly, is never tested 
successively in one session on similar questions (‘What’s same?’) or ones that would have one particular 
correct response (e.g., ‘three wood’). A question is repeated in a session only if his initial answer is 
incorrect [Pepperberg, 1981]. Thus, even though the range of correct responses to questions of, for 
example, ‘What’s same?’ or ‘What’s different?’ was limited initially to three labels (‘color’, ‘shape’, or 
‘matter’), and responses to questions about number were initially limited to the labels ‘one’ through ‘five’, 
in any session Alex also had to choose form among many possible responses to other queries such as 
‘What’s that?’, ‘Where’s the chain?’, or ‘What color?’ in order to be correct [Pepperberg, 1983, 1987a, b, 
1988c; Pepperberg and Kozak, 1986]. 

Maintaining the Subject’s Attention 
Concurrent work on a variety of tasks not only prevents expectation cuing, but is also an important 
experimental protocol because Alex becomes restless during sessions devoted to a single task 
[Pepperberg, 1983, 1999]. He ceases work, begins to preen, or interrupts with many successive requests 
for other items (‘I want X’) or changes of location (‘Wanna go Y’). Similar ‘boredom’ behavior has been 
observed in several other animals [Moran et al., 1983; Davis, 1984; Putney, 1985; Davis and Bradford, 
1986]. 

Additional Controls 
Although our formal procedures adequately protect against inadvertent cuing, two other circumstances 
provide additional controls. The first circumstance involves those trials in which the examiner errs: In 
about one in 20 trials (particularly during student exam periods), an examiner will err and scold Alex for a 
correct response. Alex will repeat his correct response, despite our procedures, which encouraged a lose-
shift strategy. The examiner then usually recognizes her error, and Alex gets his reward. The examiner, 
were she producing inadvertent cues, would in these cases have been cuing Alex to respond with an 
incorrect answer, and thus the effect would be the same as a blind test [Pepperberg, 1999]. The second 
circumstance involves informal questioning by naive visitors who are unfamiliar with the several 
idiosyncratic labels that Alex uses for certain objects [e.g., ‘banerry’ for apple, ‘truck’ for toy metallic cars, 
‘rock corn’ for dried corn, ‘wheat’ for cereal, ‘cork nut’ for almond; see Pepperberg, 1999 for a review of 
Alex’s lexical innovation and sound play]. People unfamiliar with Alex and with these labels have queried 
him about these objects; he has been correct on 190% of such trials. 

Determining Accuracy and the Correction Procedure 
As noted above, the number of times an object or collection is presented to Alex depends upon his 
accuracy, which is determined as follows [Pepperberg, 1981]: The questioner (a student trainer), presents 
to the bird in a variable, but previously determined order, the object(s) about which he will be queried. The 
principal trainer sits in a corner of the room, does not look at Alex or the examiner during presentation of 
the tests object(s), and thus does not know what is being presented. The student trainer asks one of the 
many possible different questions, to which the bird responds. The principal trainer then repeats out loud 
what she heard the parrot say. (This repetition prevents the examiner form accepting an indistinct, 
incorrect vocalization that was similar to the expected, correct response, e.g., ‘gree’ for ‘three’.) If what the 
principal trainer heard was correct (e.g., the appropriate category label), Alex is rewarded by praise and 
the object(s). There are then no additional presentations of the same material during that test; that is, 
there is only a single, ‘first trial’ response. If Alex’s identification was incorrect or indistinct, the examiner 



removes the object(s), turns his/her head (a momentary ‘time-out’), and emphatically says ‘No!’ The 
examiner then implements a correction procedure in that the misnamed object or collection is immediately 
(re)presented until Alex gives the correct identification or a total of four attempts are made; errors are 
recorded.  

Alex has learned, too, that repetition of an incorrect identification (e.g., repeated substitution of the label 
of a more desired object for the one presented) is fruitless; instead, a quick, correct identification allows 
him to request the preferred item [Pepperberg, 1981]. Because immediate re-presentation of an object or 
collection during a test occurs only when the response to the initial presentation is incorrect, the testing 
protocol penalizes a ‘win-stay’ strategy: Repetition of a previously correct response (e.g., the name of the 
previous exemplar) elicits no reward. The testing procedure thus provides a definite contrast to training 
protocols that rely on, and occasionally reinforce, repetitive behaviors. 

Scoring Procedure and Competence 
Alex’s test scores are used to evaluate his cognitive capacities on the various tasks. For most tasks, the 
test scores have been calculated in two ways [Pepperberg, 1981]. The overall test score for each task 
(results for ‘all trials’) is obtained by dividing the total number of correct identifications (i.e., the 
predetermined number of objects or collections by the total number of presentations required; such data 
track self-correction as well as overall accuracy). ‘First trial’ results (% of first trials that are correct) are 
reported for comparison and used for statistical analysis. Alex consistently responded with a high degree 
of accuracy on all questions; p values on first trials are consistently less than 0.005, and for most tests 
less than 0.0001. The following sections describe the different topics, the different tasks used to study 
these topics, the results of testing, and the implications of the data for determining Alex’s cognitive 
capacities. 

Results 

Labeling and Basic Requests 
Using the techniques described above, my students and I have taught Alex tasks that were once thought 
beyond the capability of all but humans or, possibly, certain nonhuman primates [Premack, 1978]. Alex 
has learned labels for more than 50 different objects. He has functional use of ‘no’, and of phrases such 
as ‘come here’, ‘I want X’ and ‘Wanna go Y’ where X and Y are appropriate labels for objects or locations 
[Pepperberg, 1981, 1999]. Incorrect responses to his requests by a trainer (e.g., substitution of something 
other than what he requested) generally result in his saying ‘No’ and repeating the initial request 
[Pepperberg, 1987c, 1988b]. He has labels for 7 colors and identifies five different shapes by labeling 
them as ‘two-’, ‘three-’, ‘four-’, ‘five-’, or ‘six-corner’ objects [Pepperberg, 1983]. He uses the labels ‘two’, 
‘three’, ‘four’, ‘five’, and ‘six’ to distinguish quantities of objects, including collections made up of novel 
objects, heterogeneous sets of objects, and sets in which the objects are placed in random arrays 
[Pepperberg, 1987b, 1994a]. He combines all the vocal labels to identify proficiently, request, refuse, 
categorize, and quantify more than 100 different objects, including those that vary somewhat from training 
exemplars. His accuracy averages ~80% when tested on these abilities [Pepperberg, 1981, 1983, 1987b, 
c, 1988b, 1994a, 1999].  

Concepts of Category 
We have specifically examined Alex’s capabilities to comprehend the concept of ‘category’. Not only have 
we taught Alex to label any one of a number of different hues or shapes, but to categorize objects having 
both color and shape with respect to either category based on a vocal query of ‘What color?’ or ‘What 
shape?’ [85.5%, all trials; for detailed breakdown of results, see Pepperberg, 1983, 1999]. Thus he 
understands that ‘green’, for example, is a particular instance of the category ‘color’, and that, for any 
object that is both colored and shaped, the specific instances of these attributes (e.g., ‘green’ and ‘three-



corner’) represent different categories. Thus he learned that there exists a set of responses – his color 
labels – that form the class ‘color’ and another set of responses – his shape labels – that form the class 
‘shape’ [Pepperberg, 1996]. Success on such a task shows that Alex has a higher-order class concept, 
because the color labels have no intrinsic connection to the label ‘color’ nor do the shape labels have an 
intrinsic connection to the label ‘shape’. Because the protocol often requires Alex to categorize the same 
exemplar with respect to shape at one time and color at another, the task involves flexibility in changing 
the basis for classification. Such flexibility, or capacity for reclassification, is thought to indicate the 
presence of ‘abstract aptitude’ [Hayes and Nissen, 1971].  

Concepts of Same/Different and Absence 
In the 1970s, comprehension of same/different was singled out as requiring abilities not typically 
attributable to nonprimates and specifically not to birds [Premack, 1978, 1983; Mackintosh et al., 1985]. 
The argument was that comprehension of the concept of same/different is more complex than learning to 
respond to match-to-sample and nonmatch-to-sample or oddity-from-sample, or homogeneity and 
nonhomogeneity. According to Premack [1983], the first requires use of arbitrary symbols to represent 
relationships of sameness and difference between sets of a objects and the ability to denote the attribute 
that is different. Specifically, Premack [1983] thus claims that animals need symbolic representation – at 
least some elementary form of language – to succeed. The other tasks, in contrast, require only that a 
subject show a savings in the number of trials needed to respond to B and B as a match (or as a 
homogeneous field) after learning to respond to A and A as a match (and likewise by showing a savings 
in trials involving C and D after learning to respond appropriately to A and B as nonmatching or 
nonhomogenous). Subjects in match-to-sample and nonmatch-to-sample studies might even be 
responding based on ‘old’ versus ‘new’ or ‘familiar’ versus ‘unfamiliar’ [Premack, 1983], that is, on the 
relative number of times they experience the A sample versus the number of times they see different B 
samples. A subject that understands same/different, however, not only knows that two nonidentical red 
objects are related in the same way as are two nonidentical blue objects – in terms of color – but also 
knows that the red objects are related to each other in a different way than are two nonidentical square 
objects, and, moreover, can transfer this understanding to any attribute of an item [Premack, 1978, 1983]. 
Likewise, a subject would have to understand the concept of difference in an equivalent manner. 

Alex has learned abstract concepts of ‘same’, ‘different’, and to respond to the absence of information 
about these concepts if nothing is same or different. Thus, when presented with two objects that are 
identical or that vary with respect to some or all of the attributes of color, shape, and material, Alex can 
respond with the appropriate category label as to which attribute is ‘same’ or ‘different’ for any 
combination [80.8%, all trials; 76.0%, first trials; Pepperberg, 1987a], or ‘none’ if nothing is same or 
different [83.9%, all trials; 80.9%, first trials; Pepperberg, 1988c]. 

He can respond equally accurately to instances involving objects, colors, shapes, and materials not used 
in training, including those for which he has no labels. Furthermore, we have shown that Alex is indeed 
responding to the specific questions, and not merely responding on the basis of his training and the 
physical attributes of the objects: His responses were still above chance levels when, for example, the 
question ‘What’s same?’ was posed with respect to a green wooden triangle and a blue wooden triangle. 
If he were ignoring the question and responding on the basis of his prior training, he would have 
determined, and responded with the label for, the one anomalous attribute (in this case, ‘color’). Instead, 
he responded with one of the two appropriate answers [i.e., ‘shape’ or ‘mah-mah’ (matter); Pepperberg, 
1987a]. 

Alex’s use of ‘none’ is of particular interest because the ability to understand and comment upon 
nonexistence, or even the slightly more basic notion of absence, although seemingly simple, denotes a 
relatively advanced stage in cognitive and linguistic development [Brown, 1973]. An organism reacts to 



absence only after acquiring a corpus of knowledge about the expected presence of events, objects, or 
other information in its environment, that is, only when a discrepancy exists between the expected and 
actual state of affairs [e.g., Skinner, 1957; de Villiers and de Villiers, 1979; Hearst, 1984]. (Note that such 
behavior is qualitatively different from learning what type of stimulus leads to the absence of reward [e.g., 
Astley and Wasserman, 1992]: In these cases the subjects may simply be learning what to avoid.) Many 
animal species have been tested on absence using a Piagetian paradigm (object permanence), and 
some animals do react to the disappearance or nonexistence of specific items they expect to be present 
[e.g., Funk, 1996; Pepperberg et al., 1997]. Evidence also exists from studies of wild birds. Some 
songbirds, for example, react to absence of signs of territorial defense (e.g., song) from conspecific 
neighbors with positive acts of territorial invasion [Peek, 1972; Krebs, 1977; Smith, 1979]. Bloom [1970], 
however, suggests that not only comprehension but also verbal production of terms relating to 
nonexistence is necessary before an organism can be considered to have acquired the concept of 
nonexistence. Experimental demonstration of the concept of nonexistence thus can be difficult, even in 
humans, and Alex’s capacities are therefore particularly notable. 

Numerical Concepts 
The question then arose as to whether Alex could form an entirely new categorical class consisting of 
labels for quantity. Could he be trained to reclassify a group of wooden objects known until now simply as 
‘wood’ or ‘green wood’ so that he could identify them as ‘five wood’? To succeed on this task, he would 
have to understand that a new set of labels, ‘one’, ‘two’, ‘three’, ‘four’, ‘five’, and ‘six’ represented a novel 
class: a means to categorize objects based on a combination of physical similarity within a group and the 
group’s quantity, rather than by the physical characteristics of the group members. He would also have to 
learn how to generalize this new class of numerical labels to sets of novel objects, to objects in random 
arrays, and to heterogeneous collections. The study would specifically provide information on a 
nonhuman’s concept of number. Note that Koehler [1943, 1950, 1972] and his colleagues [Braun, 1952; 
Lögler, 1959] had already demonstrated Grey parrots’ sensitivity to quantity and basic concepts of 
numerosity and numerousness; Koehler’s birds learned to open boxes randomly containing 0, 1, or 2 
baits until they obtained a fixed number (e.g., 4). The number of boxes needed to be opened to obtain the 
precise number of baits varied across trials, and the number being sought depended upon independent 
visual cues: black box lids denoted 2 baits, green lids 3, etc. Koehler claimed that his birds learned four 
different problems of this kind simultaneously. He did not state, however, if different colored lids were 
presented randomly in a single series, and thus whether colors may indeed have ‘represented’ particular 
quantities [see Pepperberg, 1987b]. Lögler [1959] transferred such behavior to flashes of light and notes 
of a flute, thus going from simultaneous visual representations to sequential auditory ones. But could 
Alex, like Matsuzawa’s [1985] chimpanzee, could go beyond these tasks and use number as a 
categorical label? 

Although our research on numerical concepts does not demonstrate that Alex has an understanding of 
number comparable to that of a human child [Fuson, 1988], the data suggest that he does comprehend 
some concept of quantity. Thus, although we have yet to show conclusively that Alex can, for example, 
without having been trained, transfer from enumerating visual simultaneous displays to enumerating 
sequential auditory ones (e.g., transfer to count sequential metronome clicks to tell us that he has heard 
‘three’), he can recognize and label different quantities of physical objects up to and including 6 [78.9%, 
all trials; Pepperberg, 1987b]. The sets of objects need not be familiar, nor need they be placed in any 
particular pattern, such as a square or triangle. Furthermore, if presented with a heterogeneous collection 
– of X’s and Y’s – he can respond appropriately to questions of either ‘How many X?’ or ‘How many Y?’ 
[62.5%, all trials; 70.0%, first trials; Pepperberg, 1987b]. His level is therefore beyond what might be 
considered subitizing in young children, who are generally given only homogeneous sets [e.g., Starkey 
and Cooper, 1995], and who, if asked about subsets, generally label the total number of objects in a 



heterogeneous set if, like Alex, they have been taught to label homogeneous sets exclusively [see Siegel, 
1982; Greeno et al., 1984]. Our work with other types of heterogeneous collections has suggested even 
more advanced skills. Alex can be shown a ‘confounded number set’ (collections of four groups of items 
that vary in two colors and two object categories – e.g., blue and red wood and blue and red wool, fig. 1) 
and be asked to label the number of items uniquely defined by the combination of one color and one 
object category (e.g., ‘How many blue wood?’). His accuracy [83.3%; Pepperberg, 1994a] replicates that 
of humans in a comparable study performed by Trick and Pylyshyn [1989]. We cannot claim that the 
mechanisms that Alex uses are identical to those of humans, but the data suggest that a non-human, 
nonprimate, nonmammalian subject has a level of competence that, in a chimpanzee, would be taken to 
indicate a human level of intelligence [Pepperberg, 1999]. 

Relative Size 
All of the research discussed up to this point involves the formation of categorical classes based at least 
indirectly on absolute physical criteria rather than relative concepts. Although items such as color and 
shape labels are symbolic and thus abstract, their references are to concrete entities [Pepperberg, 1996]. 
Demonstrating that animal subjects, and birds in particular, can respond to relative concepts is not a 
simple matter: Studies that did manage to demonstrate such behavior suggested that response on an 
absolute basis was always used in preference to response on a relative basis and that the latter response 
was often apparent only if the former was blocked in some manner [e.g., Page et al., 1989; Hulse et al., 
1990; cf. Weisman and Ratcliffe, 1989; Hurly et al., 1990]. Might Alex’s training on categorical class 
formation enable him to learn to respond readily on a relative basis, specifically that of bigger/smaller? 
Such data would provide direct comparisons with research on marine mammals [Schusterman and 
Krieger, 1986]. 

After M/R training on ‘What color bigger?’ and ‘What color smaller?’ with a limited number of colors and 
objects (yellow, blue, green; cups, woolen felt circles, Playdoh rods), we tested Alex on a variety of 
familiar and unfamiliar items. Our data showed that Alex had indeed classified objects with respect to 
relative size; his overall test scores were 78.7% [p varied between 0.044 and 0.0001 for the different 
types of transfer tests; see Pepperberg and Brezinsky, 1991]. Although we did not examine whether he 
could (or would) transfer this concept to a different modality (such as amount of sound), whether the 
acquisition of this concept might help him learn a different relationship (e.g., relative darkness), or how 
close in size two objects must be before he could not discriminate a difference, our data suggested that 
Alex demonstrated a level of understanding at least equivalent to that of certain marine mammals [e.g., 
Schusterman and Krieger, 1986]. Not only did he transpose the size relationship to stimuli outside of the 
training domain with an accuracy of 80% [binomial test, p = 0.044; Pepperberg and Brezinsky, 1991], but 
because he was responding with the label for an attribute other than size (i.e., color), we could remove 
many absolute stimulus cues by working with objects that were entirely different from those used in 
training [see discussions in Pepperberg, 1987a, 1990a]: He transferred his knowledge to objects of novel 
shapes and sizes, and colors not used in training, with an accuracy of 77.3% [binomial test, p < 0.0001; 
Pepperberg and Brezinsky, 1991]. These objects were often of shapes or materials that he could not label 
(e.g., hand-dyed styrofoam stars). Of particular interest were our findings that he could also, without any 
training, indicate when the exemplars did not differ in size by responding ‘none’ and answer questions 
based on object material rather than color [Pepperberg and Brezinsky, 1991]. Such data suggest that he 
was not limited to responding within a single dimension, that he was attending to our questions, and that 
he was able to transfer information learned in one domain (the same/different study) to another. Such 
ability to transfer is, as noted above, a mark of complex cognitive processing [see Rozin, 1976]. 

 
 



Fig. 1. Example of a ‘confounded number set’ of red and blue balls of wool and wood. Alex must view such a 
collection and respond to questions such as ‘How many blue wood?’. 

 
 
Fig. 2. Example of a collection used in the recursive, conjunctive comprehension test. Here Alex must 
respond to the question, ‘What material is green and three-corner?’. 

 



Comprehension via Recursive and Conjunctive Tasks 
We then determined formally how similar Alex’s comprehension abilities are to those of marine mammals 
that have also been trained to use a system of interspecies communication [e.g., Herman, 1987; 
Schusterman and Gisiner, 1988]. Most of the work with cetaceans and pinnipeds uses the 
comprehension mode; that is, researchers assess competence in cognitive and communicative skills by 
demonstrating how well their animal subjects understand the communication code by acting appropriately 
upon various commands. In contrast, much of the work with nonhuman primates up until the early 1990s 
and all of the prior work with Alex, although clearly involving comprehension (e.g., the difference between 
queries of ‘What’s same?’, ‘What’s different?’, ‘How many?’, ‘What color bigger/smaller?’, etc. with 
respect to any two objects), emphasizes instead the productive mode; that is, how accurately and 
appropriately the subjects can produce the code [Gardner and Gardner, 1969; Pepperberg, 1981; Miles, 
1983; Savage-Rumbaugh, 1984]. To maintain our vocal paradigm but provide the necessary 
comparisons, my students and I chose to train and test Alex on a recursive task similar to those used with 
other animals [Pepperberg, 1990b; see also Granier-Deferre and Kodratoff, 1986]. In a recursive task, a 
subject is presented with several different objects and one of several different possible questions or 
commands concerning the attributes of these objects. Each question or command contains several parts, 
the combination of which uniquely specifies which object is to be targeted and what action is to be 
performed. The complexity of the question is determined by its context (the number of different possible 
objects from which to choose) and the number of its parts (e.g., the number of attributes used to specify 
the target and the number of actions from which to choose). The subject must divide the question into 
these parts and (recursively) use its understanding of each part to answer correctly. The subject thus 
demonstrates its competence by reporting on only a single aspect (e.g., color, shape, or material) of, or 
performing one of several possible actions (fetching, touching) on, an object that is one of several 
differently colored and shaped exemplars of various materials. Alex was therefore shown trays of seven 
unique combinations of exemplars and asked questions of ‘What color is object-X?’, ‘What shape is 
object-Y?’, ‘What object is color-A?’, or ‘What object is shape-B?’ His accuracy for all questions, which 
was better than 80% [84.2%, all trials; 81.3%, first trials; Pepperberg, 1990b] was comparable to that of 
marine mammals (and also nonhuman primates) that had been tested on similar tasks. 

My students and I took this work one step further, by adding a conjunctive condition to the recursive task 
[Pepperberg, 1992]. Here Alex was again shown a 7-member collection but was now asked to provide 
information about the specific instance of one category of an item that was uniquely defined by the 
conjunction of two other categories; for example, ‘What object is color-A and shape-B?’ (see fig. 2). Other 
objects on the tray exemplified one, but not both, of these defining categories. Alex responded with an 
accuracy of 76.5%, which indicated that he understood all the elements in the question. Again, his data 
was comparable to that of marine mammals that had been similarly tested. 

Research on Three Additional Subjects 

Despite the successes that Alex had achieved, his data did not allow me to answer two long-standing 
questions: Why had M/R training enabled him to learn so many communicative and cognitive skills when 
other researchers’ paradigms had failed? Was he particularly adept? That I had succeeded with Alex, and 
that other projects had failed, was not in dispute. But was it the technique or the bird? I needed to 
determine whether some specific aspect of the M/R technique was crucial for engendering learning. If 
other birds replicated Alex’s success with M/R training, but failed with other protocols, I would have some 
answers. Thus, in April, 1991, we acquired two new male African Grey parrots: Kyaaro, 3.5 months old, 
and Alo, 7 months old; in June, 1995, we obtained Griffin, a 7.5 week old male. Using these birds, we 
began to test the relative importance of the three major aspects of input that make up the M/R training 
procedure: (1) reference, (2) context/function, and (3) interaction. Reference is generally defined as the 



meaning of an utterance, that is, the relationship between a label and the object to which it refers and is 
exemplified by our use of referential rewards. Context/function involves the particular situation in which an 
utterance is used and the effects of using the utterance; our initial use of the label as a request for the 
object gives the bird a reason to learn the unique and unfamiliar set of sounds. Social interaction signals 
which components of the environment should be noted, emphasizes common attributes – and thus 
possible underlying rules – of diverse actions, and allows input to be continuously adjusted to the level of 
the learner. Interaction not only serves to engage the subject directly, but also provides a contextual 
explanation of the reasons for the actions and demonstrates the consequences of the actions. Note that 
such studies to examine the effects of different forms of input had to await the acquisition of additional 
subjects: Had we changed Alex’s training protocols, he might have ceased to learn simply because we 
had made a change, and not because of the quality of the change. Our new subjects, with no history of 
training, would not be influenced by prior experience. 

Initial Studies Eliminating Aspects of Input 
I first studied the relative effects of simultaneously giving Alo and Kyaaro three types of input: (1) 
audiotapes of Alex’s sessions, which were nonreferential, not contextually applicable, and noninteractive; 
(2) videotapes of Alex’s session, which were referential, minimally contextually applicable, and 
noninteractive; and (3) the usual M/ R training that was referential, contextually applicable, and 
interactive. In the first two experiments, the birds listened to or watched the tapes in social isolation. 
Neither Alo nor Kyaaro learned anything from the audio or videotapes. Both birds, however, learned to 
comprehend as well as produce several labels from the M/R training [Pepperberg, 1994b]. 

Further Studies on Elements of Input 
My students and I then completed five experiments that more carefully teased out the effects of various 
elements of input. In the first, juveniles’ video sessions were repeated with ‘co-viewers’ who merely 
ensured that the birds attended to the monitor [Pepperberg et al., 1998]. Trainers provided social 
approbation for viewing and pointed to the screen, making comments like ‘Look what Alex has?’, but did 
not repeat new labels, ask questions, or relate the content to other training sessions. Such a procedure 
was based on data from young children that suggested that learning from video (e.g., from televisions 
shows such as ‘Sesame Street’) increased when the child watched with an interactive co-viewer [Lesser, 
1974; Salomon, 1977; Corder-Bolz and O’Bryant, 1978; Watkins et al., 1980; Lemish and Rice, 1986; but 
see Rice et al., 1990]. For this experiment, any attempt the bird made at producing the label would be 
rewarded with vocal praise and not the object. Thus the amount of social interaction was limited and the 
amount of functional meaning was the same as in the basic videotape session. In the second study, we 
increased the amount of interaction, so that the trainer now repeated the new labels and asked questions 
[Pepperberg et al., 1999]; the rationale for this protocol was additional data from children showing that the 
extent of interaction might be crucial for learning from video [St. Peters et al., 1989]. In the third study, my 
students and I ensured that lack of reward for an attempt at a targeted vocalization did not prevent 
learning from video [Pepperberg et al., 1998]. We used the basic videotape protocol, but included a 
reward system that enabled a parrot, in the absence of social interaction, to receive the item if it 
attempted to produce the label. The system was controlled by a student in another room who monitored 
the parrot’s utterances through headphones. In the fourth study, the model/rival procedure was amended 
to eliminate some functionality and as much social interaction as possible [Pepperberg and McLaughlin, 
1996]. Here we replicated the studies with children that demonstrated the effect of an adult jointly 
focusing (with the child) on the object that is being labeled: For children, lack of joint attention prevented 
label acquisition [e.g., Baldwin, 1995]. In our study, a single trainer sat with her back to the bird, who was 
seated on a perch within reach of an object (e.g., key) suspended form a pulley system. The trainer 
repeated various phrases about the object, e.g., ‘Look, a shiny key!’, ‘Do you want the key?’, etc. 
[sentence frames; Pepperberg, 1981], but did not make eye contact with the parrot nor did she ever 



present the object directly to the bird. She would reward any attempt at the targeted label with vocal 
praise. In the fifth study, we tested whether the bird might have become habituated to the single tape that 
was used. Although the tape contained many different interactions with Alex and all the different 
responses that he and the trainers made, the bird might have ignored the material after a number of 
sessions. We therefore replicated the study using live video input from Alex’s sessions [Pepperberg et al., 
1999]. In none of these experiments did the parrots learn referential use of the labels being taught, but did 
learn labels simultaneously being trained in the standard M/R procedure. Our results provide clear 
evidence for the importance of training procedures that involve reference, a demonstration of contextual 
use/functionality, and social interaction if a parrot is to communicate with humans and not simply mimic 
human speech. 

One further set of experiments tested what would happen if we eliminated just the modeling aspect of 
training; that is, what would happen if only a single student labeled the object, asked a bird questions, 
jointly attended to the object, and thus interacted fully with the bird and the object? Griffin did not learn 
labels trained in this manner after 50 sessions [Pepperberg et al., 2000]. When we switched the label to 
M/R training, however, he produced the labels with complete clarity after one or two sessions. Latent 
learning may have occurred: Girffin apparently had acquired the label, but did not use it until he saw its 
use modeled. Note that in other instances when we had made similar switches (e.g., after 50 video 
sessions to M/R training), birds needed F20 sessions before producing the label clearly [Pepperberg et 
al., 2000]. Thus the specific demonstration of the functionality of the label also appears to be a vital 
aspect of the training. 

Mutual Exclusivity: Study of a More Subtle Form of Input 
Despite these data that clearly support the importance of social and pragmatic input for label learning in 
Grey parrots (and parallels with studies on children [e.g., Baldwin and Tomasello, 1998]), in yet another 
study, my students and I found support for learning theories that argue for inherent constraints that shape 
learning [e.g., Markman, 1990]. We found that context-dependent input is responsible for a form of mutual 
exclusivity during label learning by Greay parrots; our data parallels findings for some young children 
[Pepperberg and Wilcox, 2000]. For human children, mutual exclusivity refers to their assumption during 
early word learning that an object has one, and only one, label [e.g., Liittschwager and Markman, 1991, 
1994; Merriman, 1991]. Along with the whole object assumption [that a label likely refers to an entire 
object rather than some partial aspect; Macnamara, 1982; Soja et al., 1985; Markman and Wachtel, 
1988], mutual exclusivity supposedly guides children in initial label acquisition. Mutual exclusivity may 
also help children overcome the whole object assumption by helping them interpret a novel word as 
something other than an object label [Markman, 1990], but for very young children, any second label for 
an object can initially be more difficult to acquire than the first, because the second label is viewed as an 
alternative [Liittschwager and Markman, 1991, 1994]. We found that if a Grey parrot is taught object 
labels for items, then presented with color or shape items as additional, rather than alternative labels (i.e., 
‘Here’s a key; it’s a green key’), they show little evidence for mutual exclusivity [Pepperberg, 1981]. If, 
however, they are given color or shape labels as alternative labels (i.e., ‘Here’s a key’ and only later ‘It’s 
green’), they have considerable difficulty learning to use these modifier labels with respect to a previously 
labeled item. Griffin, trained in the latter manner, thus persistently responded to ‘What color?’ with the 
previously learned object label in over 50 training sessions [Pepperberg and Wilcox, 2000]. Such data 
show that even small changes in how input is presented can affect label acquisition. 

Note that such data is also consistent with the interpretation that mutual exclusivity initially simply blocks 
new information – an evolutionarily widespread phenomenon not unique to humans – and that it is not a 
linguistic or even a cognitive process to help acquire attributes and concepts [Markman, 1992]. If the 
presence/absence of initial mutual exclusivity is consistently determined by the form of input, blocking is a 



more likely explanation. We are therefore continuing research on this topic. Clearly, our results suggest 
that learning theories should incorporate a number of different approaches [see Hirsh-Pasek et al., 2000]. 

Discussion 

Implications of the Results 
These results have several implications concerning a parrot’s ability to perform numerous complex 
cognitive tasks, and unlike marine mammals and some nonhuman primates, both to produce and 
comprehend complex labels, including ones with small phonological distinctions [e.g., labels that differ by 
a single phoneme, such as ‘tea’ and ‘pea’, ‘cork’ and ‘corn’; [Patterson and Pepperberg, 1994, 1998]: 
What are the mechanisms that a nonhuman, nonprimate, nonmammalian creature uses to learn what are 
more than simple associations, to transfer knowledge learned in one domain to another, to make subtle 
phonological distinctions? Neurobiologists are attempting to determine the brain areas that are involved in 
such processing in psittacine birds [e.g., Striedter, 1994; Jarvis and Mello, 2000]; other researchers are 
trying to determine how a Grey parrot manipulates its vocal tract to produce human phonemes [Patterson 
et al., 1997], and studies in my laboratory continue to determine the extent of psittacine cognitive 
processing and how input affects such exceptional learning in a bird. The critical results of my research 
are not simply that parrots can learn to perform tasks that were once thought the exclusive domain of 
humans or nonhuman primates, but that we must be open to the idea that animals that appear small-
brained and that are evolutionarily remote from humans are nevertheless capable of complex, cognitive 
processing. 
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