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ABSTRACT 

A grey parrot (Psittacus erithacus), able to label the color of the bigger or smaller object in a pair (I. M. 
Pepperberg & M. V. Brezinsky, 1991), to vocally quantify ≤6 item sets (including heterogeneous subsets; 
I. M. Pepperberg, 1994), and separately trained to identify Arabic numerals 1–6 with the same vocal 
English labels but not to associate Arabic numbers with their relevant physical quantities, was shown 
pairs of Arabic numbers or an Arabic numeral and a set of objects and was asked for the color of the 
bigger or smaller one. The parrot’s success showed he (a) understood number symbols as abstract 
representations of real-world collections, (b) inferred the relationship between the Arabic number and the 
quantity via stimulus equivalence, and (c) understood the ordinal relationship of his numbers. 

 

 

 

The comparison of nonhumans’ number concepts with those of human children continues to be a vibrant 
research topic. According to some researchers, animals’ number sense is a neurally based, evolutionarily 
inherent skill (e.g., Dehaene, 1997; Gallistel & Gelman, 1992) from which human competence derives. 
Recent studies on possible parallels in brain areas underlying numerical judgments in humans and 
monkeys (review in Göbel & Rushworth, 2004; see also Dehaene, Molko, Cohen, & Wilson, 2004; 
Dehaene, Piazza, Pinel, & Cohen, 2003; Nieder & Miller, 2003) support such an evolutionary continuum 
in numerical abilities.1 Nevertheless, more advanced numerical abilities— exact counting of quantities ≥4 
and arithmetic operations— have been considered to be uniquely human and based on language skills 
(Spelke & Tsivkin, 2001). Although primates trained with human-based symbolic systems involving Arabic 
numerals (chimpanzees, Pan troglodytes; Boysen, 1993; Boysen & Berntson, 1989, 1990; Boysen & 
Hallberg, 2000; Matsuzawa, 1985) and nonprimates’ referential use of vocal English number words (Grey 
parrots, Psittacus erithacus; Pepperberg, 1987, 1994, 2006; Pepperberg & Gordon, 2005) might seem to 
provide intermediary links between animals that lack such training and children, questions still remain as 
to the extent of animal number competence compared to that of humans (e.g., Mix, Huttenlocher, & 
Levine, 2002). In particular, full symbolic understanding of ordinality seems difficult for nonhumans to 
master. 



Ordinality is important because it is intrinsic to verbal counting (Davis & Pérusse, 1988; Fuson, 1988; 
Gelman & Gallistel, 1986). To count, an organism must produce a standard sequence of number tags and 
know the relationships among and between these tags; for example, that “two” (be it any vocal or physical 
symbol) not only comes before “four” in the verbal sequence but also represents a quantity less than 
“four.” Children seem to integrate their acquisition of ordinal– cardinal abilities in a stepwise manner. They 
first learn cardinality for very small numbers (<4) and a general sense of “more versus less,” next acquire 
a meaningless, rote ordinal number series, then associate their knowledge of quantity in the small sets 
with this number sequence to form 1:1 correspondences that can be extended to larger amounts for both 
cardinal and ordinal accuracy (e.g., Brannon, 2002; Carey, 2004; Xu & Spelke, 2000; note Liddle & 
Wilkinson, 1987, review in Mix et al., 2002). It is interesting to note that children may learn associative 
rules that allow them to act as though they have full understanding of the cardinality of number words or 
numerals before they have such competence (i.e., respond correctly to “How many?” but fail on “Give me 
X”; see Sophian, 1995) but cannot do so with ordinality (Bruce & Threlfall, 2004; Teubal & Guberman, 
2002). 

Ordinality studies are also complicated by the fact that most experiments on young children and animals 
involve ordering collections of objects (e.g., Brannon, 2002; Brannon & Terrace, 1998, 2000; Emmerton, 
Lohmann, & Niemann, 1997; Judge, Evans, & Vyas, 2005; Thomas, Fowlkes, & Vickery, 1980) and do 
not involve symbolic ordering of Arabic numbers based on their referential value (e.g., Brannon, Wusthoff, 
Gallistel, & Gibbon, 2001). Rhesus monkeys (Macaca mulatta; Washburn & Rumbaugh, 1991) and 
squirrel monkeys (Saimiri sciureus; Otlhof, Iden, & Roberts, 1997) learned to order Arabic numbers based 
on quantities to which they referred and to infer relations among novel pairings, but symbolic ordering 
separate from numerical food rewards did not emerge spontaneously. Replication of these studies with 
pigeons (Columba livia; Olthof & Roberts, 2000) showed the birds responded to mass of food rather than 
number, and such controls were not always used in the monkey studies. Boysen and colleagues (Boysen, 
Berntson, Shreyer, & Quigley, 1993) trained chimpanzees to pick the bigger Arabic numeral of various 
adjacent pairs based, as were the monkey studies, on the quantities to which they referred, then showed 
that their subjects used transitive inference to choose the correct response for nonadjacent pairs; the 
need for significant training on adjacent pairs, however, showed that ordinal relationships did not emerge 
from the apes’ previous referential use of Arabic numerals. Similarly, Matsuzawa and colleagues (Kawai 
& Matsuzawa, 2000; Matsuzawa, Itakura, & Tomonaga, 1991; Tomonaga, Matsuzawa, & Itakura, 1993) 
had to train their chimpanzee, Ai, in ordinal use of Arabic numerals she could use cardinally. The question 
thus arose as to whether ordinality would emerge or have to be taught to a Grey parrot, Alex, that had 
learned to quantify sets of objects with vocal English labels, including heterogeneous collections (e.g., the 
number of red balls in a collection of red and blue balls and blocks; Pepperberg, 1994). Note, he had not 
learned number labels in ordinal order, having first been taught “three” and “four,” then “two” and “five,” 
next “six,” and lastly “one” (Pepperberg, 1987, 1994), and he might have, like young children and apes, 
associated number labels and quantity without understanding the symbolic ordinality of his number labels. 

A task involving equivalence relations can test this ability. After being trained to identify Arabic numerals 
in the absence of the physical quantities to which they refer, could Alex use the commonality of English-
based labels to correlate (form equivalence relations between) quantity and Arabic numerals (see Figure 
1), so as to identify the color of one of a pair of Arabic numbers (e.g., a blue 3, a red 4, set next to each 
other on a tray) that is numerically (not physically) bigger or smaller? He could already answer “What 
color/matter [is] bigger/smaller?” for object pairs and to respond “none” if nothing was bigger or smaller 
(Pepperberg & Brezinsky, 1991). To succeed on this new task, he would have to choose which Arabic 
numeral is bigger or smaller based on deductions and inferences: Deduce that an Arabic symbol has the 
same numerical value as a vocal label, compare representations of quantity for which the label stands, 
infer rank ordering based on these representations, then state the result orally. Specific stimuli within 



pairs would, unlike in other nonhuman studies, not have been associated with reward of the 
corresponding number of items (Wynne, 1992), and by requiring color, not number, label responses and 
querying about both larger and smaller values, use of rote replies would be less likely for a given pair (see 
below); pairs could be presented at least a few times with less chance of training.2 The task would require 
working and long-term memory (Geary, Hamson, & Hoard, 2000) and a form of equivalence: Only by 
using the commonality of English-based labels to correlate—form equivalence relations between—
quantity and Arabic numerals could Alex tell which of the Arabic numerals was the bigger or smaller, that 
is, rank order his numerals. Note that Alex had heard younger birds’ training on labeling the number of 
sequential sounds (training to respond to, e.g., hearing three computer-generated clicks with the vocal 
label “three”; Pepperberg, 2006), but these labels also were not taught in sequential order, and Alex’s use 
of such information (“more” noise) would, moreover, involve cross-modal transfer.  

 

Figure 1. The arrow from “‘vocal number label” to “object collection” represents vocal production of number 
labels in the presence of a collection of objects (accuracy 83.3%; Pepperberg, 1994); the arrow from “object 
collection” to “vocal number label” is comprehension of vocal number labels in the presence of a collection 
of objects (88%; Pepperberg & Gordon, 2005); the arrows represent a symmetric relationship, and Alex can 
do both. The arrow from “vocal number label” to “Arabic numeral” represents vocal production of number 
label in the presence of an Arabic number symbol; the arrow from “Arabic numeral” to “vocal number label” 
represents comprehension of the vocal number label in the presence of an Arabic number symbol; the 
arrows represent a symmetric relationship, and Alex can do both ("83%; Pepperberg, 1997). The paths 
between “object collection” and “Arabic numeral” are untrained. If Alex sees an Arabic numeral, will he 
understand that it represents the appropriate collection of objects? The arrows between “Arabic numeral” 
and “object collection” represent an emergent equivalence relationship (see Devany, Hayes, & Nelson, 1986). 

 

 

Although numbers involved in this study are relatively small (!6), the task would also show if Alex, like 
humans (Geary et al., 2000; Moyer, 1973), has more difficulty comparing Arabic numbers close in 
numerical value than those differing by larger amounts and if larger valued pairs (e.g., 5:6) present more 
problems than smaller ones (1:2). That is, will Alex demonstrate humanlike numerical distance effects 
(Buckley & Gillman, 1974; Dehaene, 1997; Moyer & Landauer, 1967)? Humans, supposedly, use internal 
representations (maps to exact quantities or number lines) to determine which of two numerals is bigger 
or smaller; they thus find the task more difficult for close numbers—even for small quantities— because 
representations overlap more. Most human studies compare reaction times to determine these effects, 
but such is not possible with Alex. His reaction time depends on his immediate interest in the task 
(Pepperberg, 1999); however, error rates may provide a measure of difficulty. The data could also be 
analyzed to see if Alex had more difficulty if numerals were not in ordinal order on the tray; some 



evidence suggests that such ordering slows reaction times in humans (Dehaene, Bossini, & Giraux, 
1993). Results may thus provide some means of comparing his symbolic understanding of number labels 
to that of humans (Whalen, Gallistel, & Gelman, 1999). 

Three other types of comparisons were also of interest. First, to see if physical size might confound 
symbolic issues for Alex as it sometimes does for young children (e.g., Girelli, Lucangeli, & Butterworth, 
2000; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002), I presented trials with identical numerals of 
different sizes and colors (e.g., 6:6). Children given such exemplars were told when the target of interest 
was size versus number, and I could not, without significant additional training (on the label “size”),3 
similarly alert Alex, but I could determine on which basis he would preferentially respond; that is, would he 
say “none” or the color of the physically bigger or smaller numeral? Second, trials on identical numerals of 
different colors but of the same size (e.g., 6:6) were included as controls for this test; that is, to see if Alex 
would, as expected, reply “none” to the query as to which was bigger or smaller. Third, in a small number 
of trials, I mixed Arabic symbols and physical items (one for each possible pairing, including identical 
numerical values). Numerals were placed next to random arrays of objects on a tray, counterbalanced 
with respect to left–right, bigger–smaller queries; Alex was again to label the color of the bigger or smaller 
numerical quantity. A correct response to, for example, one numeral (an Arabic 6) as bigger than five 
items (or an Arabic 2 as the same as two items) would show further understanding of the abstract nature 
of symbols and test ordinality of numerosities in a manner cleanly separating mass and number (for 
children’s confounds of mass and number, see Mix et al., 2002; Sophian, 2000). Such trials would be 
another control for learning a specific response to specific numeral pairs. A few trials were added in which 
pairings were such that the Arabic numeral was indeed the smaller numerical quantity, to ensure that Alex 
did not extract a pattern inherent in the questioning; that is, assume that the Arabic number would always 
be the larger quantity and then respond to bigger–smaller on that basis. The data would provide 
additional information on how a bird balances size with the distance effect; that is, would a distance effect 
exist and, if so, would it be more pronounced for symbolic or physical closeness (Rubinsten et al., 2002)? 

General Method 

Subject and Housing 

Alex, a 28-year-old male Grey parrot (Psittacus erithacus), had been the subject of numerous cognitive 
and communicative studies for 27 years, including those involving numerical competence (Pepperberg, 
1987, 1994, 2006; Pepperberg & Gordon, 2005). Testing locations and living conditions when neither 
testing nor training was in progress are described in Pepperberg and Wilkes (2004) for the majority of 
testing. The first 18 trials occurred in 1997, and living conditions are described in Pepperberg (1994). 
Food and water were available at his vocal request at all times. In this study he used previously 
documented abilities (Pepperberg, 1994, 1999; Pepperberg & Gordon, 2005) to produce and comprehend 
vocal labels for quantities (≤6), Arabic numbers (≤6), and colors (rose [red], green, purple, blue, yellow, 
orange, gray) and to understand the concept of relative size and absence of size difference (Pepperberg 
& Brezinsky, 1991). At the time of the testing, Alex had never received explicit training (match-to-sample 
or model/rival; Pepperberg, 1981) on relationships between any pairs of tested items or between object 
collections and Arabic numerals. 

Apparatus and Materials 

Tests involved familiar objects. The tray forming the substrate for all trials had been used for earlier 
studies on label comprehension (Pepperberg, 1990, 1992), object permanence (Pepperberg & Kozak, 
1986), and other number capacities (Pepperberg, 1994, 2006, Pepperberg & Gordon, 2005). I, along with 
other trainers, concurrently used the tray for training phoneme recognition and spatial concepts (e.g., 



Pepperberg, in press) so it would not cue a number task. Alex had previously been trained to identify the 
Arabic numbers (either colored plastic magnets or food-dyed wooden numerals of equivalent size) by 
being given a tray of all numerals (1– 6) and being queried “What color X?” (X = an Arabic numeral from 1 
to 6) or “What number Y?” (Y = one of seven colors). Objects used for comparison with numerals were 
also familiar: pompons, wooden blocks, and so forth (see the Appendix). 

General Procedure: Object Presentation 

In the absence of any prior training, a trial began when a human, out of Alex’s line of sight, placed either 
two Arabic numerals or an Arabic numeral and a collection of objects onto the tray, counterbalancing the 
larger–smaller numeral or set on the right and left across trials. Numerals were placed about 2.5 cm 
apart; for trials with object sets, objects were generally less than 1 cm apart. The human brought the tray 
up to Alex’s face and made eye contact but did not look at the tray; Alex was then asked, vocally, to 
respond to “What color[ed] number [is] bigger (smaller)?” If he did not respond within approximately 30 s, 
the question was repeated. Trials were counterbalanced as to the question and also randomized with 
respect to color labels and pairings of numerals. 

The experiment consisted of 110 trials. Each possible nonidentical pair of same-sized numerals (e.g., 1:6; 
3:4) was presented four times, in random order (60 trials) with the smaller to the left half of the time and 
the other way around the other half of the time and right–left order randomized; identical pairs of same-
sized numerals (e.g., 6:6) were presented twice (12 trials); identical pairs of different-sized numerals (e.g., 
6:6) were presented twice (12 trials, once with the smaller on the left and once on the right; numerals 
differed by about 5–7 mm), and 26 trials involved objects versus symbols (see the Appendix for details of 
object–symbol pairings). All trials were intermixed randomly. The number of trials of any one type was 
deliberately kept low to avoid training. Trials somewhat overlapped a study on addition (Pepperberg, 
2006), in which Alex demonstrated approximately 90% accuracy in quantifying groupings of items. 

General Testing Procedure 

Test sessions of a single ordinality question occurred approximately once per week between June 1997 
and December 1997 and an average two to five times per week during November 2004 to June 2005, 
with breaks for student vacations, intersessions, and other periods of limited staffing. Only 18 trials were 
presented in 1997; the study was paused because of lack of staffing and several moves of the entire 
laboratory. Test questions were presented intermittently either during free periods (when birds would 
request various foods or interactions) or during sessions on current (and thus unrelated) topics (e.g., 
using Alex to assist in training another parrot on shape labels) until all questions for the experiments were 
presented. Details of test procedures, including descriptions of precautions against inadvertent and 
expectation cuing, are in Pepperberg (1981, 1990, 1994); summaries are below. A question would be 
repeated in a session only if Alex’s initial answer was incorrect (e.g., Pepperberg, 1981, 1987). 
Specifically, the number of times an array was presented to Alex depended on his accuracy. If Alex 
produced the appropriate label, he received praise and the objects on the tray or was allowed to request 
an alternative reward (as the study progressed, chewing numerals was less rewarding; he then stated “I 
want X”; X usually was a cork, a nut, etc.). No further presentations of the same exemplars then occurred; 
that is, there was only a single, first-trial response. If an identification was incorrect or indistinct, the 
examiner removed the tray of objects, turned his or her head, and emphatically said “No!” Only under this 
condition (i.e., an erroneous response) were test materials immediately, repeatedly presented to penalize 
a win–stay strategy. Presentation continued until a correct identification was made or four attempts 
occurred;4 errors were recorded.  



As in all studies with Alex, protocol differed from those used with other animals in two respects. First, the 
task capitalized on Alex’s ability to work in the vocal mode; second, each trial was generally presented 
intermittently during training and testing of other unrelated topics also under study. Alex’s responses thus 
had to be chosen from his entire repertoire ($90 utterances, including food and location labels) and from 
among numerous possible topics concerning various exemplars and queries in each session. This design 
not only increased the task complexity but also prevented several forms of cuing discussed below (see 
also Pepperberg, 1999; Premack, 1976, p. 132). 

Controls Against Expectation and Experimenter-Induced Cuing 

Test situations included specific precautions to avoid cuing. One control was a design such that each test 
session was, as noted above, presented intermittently during free periods or work on unrelated topics. As 
noted earlier, Alex’s responses had to be chosen from his entire repertoire and from among numerous 
possible topics during each session; each session contained only a single number array. An examiner 
who, for example, poses a series of similar questions may come to expect a particular answer and 
unconsciously accept an indistinct (and by our criteria incorrect) response of, for example, “gree” (a mix of 
“green” and “three”) for “green.” Second, in general, a human other than the one presenting the tray (one 
of four possible individuals in these experiments), who did not know what was on the tray, confirmed the 
answer; his or her interpretation of Alex’s response was thus unlikely to be influenced by an expectation 
of a certain color label. Only after his or her confirmation was Alex rewarded (Pepperberg, 1981). Third, 
because Alex had not been trained on this task, no overlap occurred between training and testing 
situations and, because training on number and color labels had occurred years before with trainers no 
longer in the lab, Alex could not have picked up on trainer-induced cues specific to a given label 
(Pepperberg, 1981); moreover, because a total of five different humans were involved in the testing, the 
presence of a particular individual could not cue a number session. Fourth, the evaluator was unlikely to 
be influenced by hearing the type of question posed: In a previous study, transcriptions of contextless 
audiotapes of Alex’s responses in a session agreed with original evaluations to within 98.2% 
(Pepperberg, 1992).5 About 10% of trials were videotaped to check for interobserver reliability. If 
interobserver reliability with a blind coder was high, I could be assured of the validity of other trials. Given 
that Alex was far more interested in the student performing the taping and the video camera rather than 
the objects to be labeled, such trials were difficult to execute and were kept to a minimum. Note that 
about a third of these video trials had to be discarded because Alex would not attend to the exemplars, 
and of the remaining trials, one had to be discarded because Alex’s speech was too soft to be heard on 
the tapes. Thus only six trials were available for analysis, and two of the four evaluators of these trials 
said Alex’s speech was too soft to be understood except on one or three trials, respectively. Evaluators 
were people who had never been in the laboratory and who had no familiarity with Alex. 

Scoring 

Alex’s test scores were calculated two ways. Because the test procedure required that a question could 
be repeated (up to four times) until Alex produced the correct response, I scored both first-trial and all-trial 
responses. First-trial results were the percentage of correct responses on first trials. The test score result 
for all trials was obtained by dividing the total number of correct identifications (i.e., the predetermined 
number of collections) by the total number of presentations required to obtain the correct responses. All-
trial scores are reported because the type of error Alex made could provide information on exactly how he 
was processing the information; that is, was he consistently choosing the wrong alternative or was he 
having difficulty identifying a color? Except as noted, statistics were performed only on first-trial data. 

To learn if Alex’s results were statistically significant, I used, except where noted, a binomial test with 
chance of 1/2; that is, a choice between one of the two possible color labels of the numerals on the tray. 



A less conservative calculation would include the probability of producing any possible color label (1/7) or 
any of the "90 labels in his repertoire; calculations assume that Alex will always (p = 1) attend and 
respond correctly to the “What color . . . ?” question (i.e., not provide a random label that had no 
connection to the task at hand). Occasionally, Alex would produce a series of color labels not on the tray; 
such trials (approximately 5% of the total) were, as explained in Pepperberg and Gordon (2005), 
discarded and repeated at a later date. If Alex had two consecutive sessions of such noncompliance, I 
switched to testing on a different topic for four consecutive sessions. 

Results 

For trials involving two different Arabic numbers of the same physical size, Alex was capable of inferring 
ordinal ranking. Even the errors he made provide insight into his understanding of ordinality. Of particular 
interest were scores the first time he was presented with each individual pair, accuracy for pairings 
differing by only one or two units compared with those differing by larger amounts, responses to both 
differently sized and same-sized identical numerals, responses on symbol versus object collection trials, 
and interobservability scores. 

Responses for Numeral–Numeral Trials 

I calculated Alex’s responses for all numeral pairs (60 trials) plus those for identical numerals of both 
different and equal sizes (24 trials) with respect to two different error criteria (see Table 1). Under the first, 
I counted as errors his initial correct response of the number label rather than the color label (e.g., if 
shown a blue 4 and a red 6, asked “What color bigger?” and he responded “six,” “six” was technically 
correct, but not with respect to the actual query); his first trial score was 63/84, or 75% (p < .01, binomial 
test, chance of 1/2). For all trials (i.e., including corrections trials), his score was 84/108, or 77.7%. Initial 
errors were divided mostly equally between right and left presentations of the smaller value. Under the 
second criterion, I did not count the number label responses as errors; his first trial score was then 74/84, 
or 88.1% (p < .001, binomial test, chance of 1/2). For all trials, his score was 84/95, or 88.4%. Again, his 
initial errors were essentially divided fairly equally between right and left presentations of the smaller 
values. 

Initial Trials Versus Final Trials 

Alex’s score for the first trial for each unique number pair, including the first set of identical numerals 
(same size, same value) was 15/21, or 71.4% (p = .04, binomial test, chance of 1/2), if I include as errors 
trials in which he gave the correct number rather than the color label; if I do not, his score is 19/21, or 
90.5% (p < .001). He erred by saying “none” for a 1:2 discrimination and giving the larger rather than the 
requested smaller answer for a 1:5 discrimination. His score for the final trials of the same unique number 
pairs was 19/21, or 90.5% (p < .001); he did not err by giving any number labels. One error was a yellow– 
orange confound, the other was to state a color not on the tray. The differences in scores (even with the 
number label errors) are not statistically significant (Fisher’s exact test, p = .12, one-tailed). 

Distance and Size Effects 

I separately analyzed Alex’s response for close pairings to examine distance effects (see Table 1). If I do 
not count as errors instances in which he produced the correct number label rather than the color label, 
for numeral pairs that differed by a single unit (e.g., 3:4), Alex was correct 14/20, or 70% (p = .06), which 
just misses statistical significance. It is interesting that, of his six errors, three were to say “none,” one was 
choosing the wrong value, and two were yellow– orange confounds (saying yellow when there was 
nothing yellow on the tray and the answer was orange; Alex sometimes confuses these two colors 
because human and parrot color perception differ somewhat;6 see discussion in Bowmaker, Heath, Das, 



& Hunt, 1994; Bowmaker, Heath, Wilkie, Das, & Hunt, 1996; Pepperberg, 1994, 2006). If I omit the color 
confound, p < .01. For numeral pairs that differed by two units (e.g., 1:3), Alex was correct 13/16, or 
81.3% (p = .01, binomial test, chance of 1/2); if I do not count as errors his stating the correct number 
label rather than the color, his score is 15/16 (p < .01, binomial, chance of 1/2); his one error was another 
yellow– orange confound. For pairs that differed by four or five units (1:6, 2:6, 1:5), Alex was correct on 
10/12 trials (no labeling of numeral rather than color), or 83.5% (p = .02, binomial test, chance of 1/2). 
One error was to state “none,” the other was to give the color of the bigger, not the smaller, numeral. The 
difference between trials (including the color confounds) involving large (four or five units) and small (one 
unit) differences in numerals was nonsignificant (Fisher’s exact test, p = .34, one-tailed). 

Table 1. Summary of Results and Errors for All Trials 

Description of trials Score % Probability Error description 
     

Arabic numerals, every numeral–numeral trial 
(number, not color error included) 

63/84 75 <.01 Said number, not color (11×) 
Said “none” (4×) 
Yellow–orange confound (3×) 
Wrong choice (2×) 
Said color not on tray 

Arabic numerals, every numeral–numeral trial 
(number, not color error not included) 

74/84 88.1 <.001 (See above) 

Arabic numerals, differing by 1 unit 14/20 70 .06 Said “none” (3×) 
Yellow–orange confound (2×) 
Wrong choice 

Arabic numerals, differing by 2 units 15/16 93.8 <.01 Yellow–orange confound 
Arabic numerals, differing by 4 or 5 units 10/12 83.3 .02 Said “none” 

Wrong choice 

Arabic numerals, same value, same size 10/12 83.3 .02 Said number 
Said color not on tray 

Arabic numerals, same value, different size 12/12 100 <.001  
Arabic numerals and objects, noncongruenta 13/16 81.3 .01 Said color not on tray (2×) 

Same value, responded with respect to mass 

Arabic numerals and one object 0/5 0 NA Always stated “none” 

a “Noncongruent” means that the value of the Arabic number is larger than or equal to the value of the physical set of items. 

 

I also compared Alex’s responses for small (1:2) versus large (5:6) numerals to see if he had more 
difficulty distinguishing differences between larger numerals. There were, of course, only four trials per 
pair, too few for meaningful statistical analysis.7 Nevertheless, the types of errors are interesting. For 1:2, 
he was correct only 50%; of his two errors, one was a response of “none” and the other was to give the 
color of the bigger, rather than the smaller, numeral. For 5:6, he was again correct only 50%, but of his 
two errors, one was a yellow– orange color confound and the other was to provide the number rather than 
the color. 

Identical Numerals 

Alex had two sets of this type of question: one set in which the Arabic numbers were the same value and 
the same size, and one in which the Arabic numbers were the same value but different sizes (see Table 
1). On the same value–same size trials, his accuracy was 10/12, or 83.3%, p < .01 (binomial test, chance 
of 1/3; answers could be one of the two colors or “none”); for all trials his result was 12/15, or 80%. On 



one trial, he produced and then repeated the label for the number; on another trial he produced the label 
for a color that was not on the tray. For the same value–different size trials, counting as correct either 
“none” or the color label of the targeted number, his accuracy was 12/12, or 100%, p < .01 (binomial test, 
chance of 2/3, a color or “none”). Seven times he gave the correct color, five times he said “none,” but he 
gave colors most often in the earlier trials and “none” most often in later trials (see Discussion). 

Symbol Versus Collection Trials 

Overall, Alex scored 17/26, or 65.4%, on first trials, p = .08 (binomial test, chance of 1/2); for all trials, he 
scored 26/35, or 74.9%; his results were not statistically significantly above chance, although the trend 
was in the appropriate direction (Table 1 and the Appendix). Reanalyzing the results somewhat 
differently, however, demonstrates a more complex situation. On trials in which an array of objects was 
paired with a single Arabic number representing a quantity larger than or equal to the array, but not pitting 
one object against a single numeral representing a larger number, Alex scored 13/16, or 81%, p = .01; of 
the three errors, two involved production of a color not on the tray. Adding the trials in which the single 
Arabic number represented a quantity less than the array (congruent trials) gives an accuracy of 16/21, or 
76.2%, p = .01. The large number of errors and lack of statistical significance for the total number of trials 
arose from five of five trials in which a single object was paired with a single Arabic number that 
represented a larger quantity; Alex consistently replied “none.” The right versus left position of the smaller 
number did not make a difference on any of the trials, as errors were random (of nine errors, four were on 
the right and five on the left).  

Interobserver Reliability 

The two evaluators who could hear all six trials agreed 100% with what Alex said. The one evaluator who 
could hear only one trial identified that label correctly. The one evaluator who could hear three trials 
identified one correctly and two incorrectly. Thus the sum was 13/15, or 86.7%. 

Discussion 

Despite never having been taught the correspondence between physical sets of objects and Arabic 
numerals, Alex demonstrated knowledge of ordinality and an equivalence relationship. He also responded 
in intriguing ways when shown numerals of equal value but different sizes and when collections of objects 
were contrasted with numerals. In all cases, three serial processing stages were likely to have been 
involved: (a) identification (recognizing the numerals or quantity of objects), (b) comparison, and (c) 
response (Dehaene, 1996). The types of processing with respect to comparison might, however, vary 
depending on the task.  

Ordinality 

Alex demonstrated that he inferred the ordinal relations among his Arabic numbers without direct training 
of the 1:1 correspondence between these numerals and their corresponding object sets and without 
having been trained to recite the numerals in order. Even when errors such as color confounds and 
providing the correct number rather than color label are included—the latter more a failure to follow 
directions rather than a failure of numerical understanding— his score is statistically significant. Given 
that Alex did not receive corresponding amounts of food for his answers (e.g., Olthof & Roberts, 2000; 
Washburn & Rumbaugh, 1991), he was not responding on the basis of directly associated physical mass, 
and, given that the numerals themselves were (except for the separate subset of trials) roughly the same 
size (i.e., granted “1” is of less mass and contour than “6,” but their heights are equivalent, and other 
Arabic numerals, e.g., “2” and “5” are fairly equivalent), he was not likely responding on the basis of the 
mass or contour of the numerals. In fact, his error for a 1:2 discrimination was, when asked about the 



smaller numeral, to give the color of the bigger. He did, for the most part, respond with respect to the 
numerical magnitude represented by the Arabic numeral. He succeeded on this task by equivalence, that 
is, by knowing the relationships between the set of items (abstract numerical magnitude) and the English 
vocalization, the English vocalization and the Arabic numbers, and inferring the relationship between the 
numerical magnitude and the Arabic number. Little if any learning occurred during testing. Although the 
few errors he made initially demonstrated a lack of attention to the question and the few errors he made 
at the end appeared not to be numerically related, his overall scores for initial trials were not significantly 
different from scores for final trials. Alex’s errors showed that he responded in ways both similar to and 
different from humans when faced with symbolic ordinality tasks. 

He showed a limited numerical distance effect, in which discrimination between two numbers decreases 
as numerical distance between them decreases (Moyer & Landauer, 1967), but not much of a number 
size effect, in which discrimination of two numbers declines as their numerical size increases, even if the 
numerical distance remains the same (e.g., discriminating 5:6 is more difficult than 1:2; see Rousselle, 
Palmer, & Noël, 2004). Of his overall six errors (not including stating the number or color confounds), four 
were to say “none” for 1:2, 2:3, 4:5, and 1:5 pairs; thus a weak trend was in the direction of more errors 
for trials involving one unit differences, but for smaller numeral pairs. He seemed to confuse the 1:2 
pairing, giving the color of the bigger rather than the smaller numeral once and failing to distinguish 
between them once; his errors for the 5:6 pairings were a color confound and to give the correct number 
instead of its requested color, errors not directly related to numerical understanding. For humans, most 
researchers propose that mental representations become approximate above four, unless canonical 
patterns (e.g., dice, dominoes) are used (see Mix et al., 2002), and thus comparing mental   
representations for two large amounts is more difficult than for small amounts. Some researchers argue 
that for humans numerical distance for two close digits (e.g., 1:2) may influence performance even when 
the questions do not relate to numerical magnitude and that such distance effects indicate automatic 
processing of representations of numerical magnitude (note Dehaene & Akhavein, 1995); even training 
cannot remove the effect in adults (Dehaene, 1997). It is interesting to note that Alex’s previous data on 
vocal discriminations of sets of physical objects that differed by small amounts did not show such an 
effect (Pepperberg & Gordon, 2005), somewhat like data for children (Yonas, Granrud, & Pettersen, 
1985). That the issue arose when Arabic symbols were the stimuli, and once for a larger set (i.e., 
involving a symbol above “4”; see Buckley & Gillman, 1974), suggests that Alex, like humans, may be 
converting the numbers to a representation of object quantity, which he then compared mentally, and for 
which confusion is more likely for comparisons close in size. For children, the ability to classify Arabic 
numerals as large versus small (and thus make comparisons) improves with age and experience and 
relies to some extent on memory (see Rubinsten et al., 2002); such was unlikely for Alex. He did not, 
however, make significantly more errors overall for sets that differed by one unit than for sets that differed 
by four or five units. 

Alex did not appear to be influenced by something called the “spatial–numerical association of response 
codes” (SNARC) effect. SNARC is based on the idea that a subject orders numerals along a line, right to 
left with respect to increasing value (based on direction of writing), such that responses would be, in 
humans, faster in a comparison when the smaller number is to the left and the larger to the right (i.e., 
ordinal order; Berch, Foley, Hill, & Ryan, 1999; Dehaene et al., 1993, but see Ito & Hatta, 2004). Although 
Alex’s reaction times are not valuable indicators of ability (Pepperberg, 1999), I could determine if he was 
less accurate when asked to designate the bigger number if it was to the left of the smaller. He was not. 
Of course, lack of errors does not rule out use of a number line, but given his lack of training on ordinality, 
he is probably less likely than children to use a number line. 

 



Symbolic Versus Physical Relations 

In the two different types of trials in which size was contrasted with numerical quantity, Alex reacted in 
some ways similar to those of young children (Girelli et al., 2000; Rubinsten et al., 2002). When the sizes 
of the numerals were different, he initially responded with respect to the physical dimension. When a 
numeral was contrasted with a physical grouping, he mostly responded on the basis of the numeral 
quantity; his one exception was quite intriguing. I discuss the different results in turn. 

Size of numerals. Although data for children in trials involving the size of numerals are based on reaction 
times, which cannot be determined for Alex, his response patterns can be used to suggest parallels with 
human processing. Young children without much experience in comparing numerical values of Arabic 
digits take significantly more time to respond on the basis of numerical than physical information in 
determining relative sizes of Arabic numeral pairs when instructed to choose on the basis of numerical 
value (Rubinsten et al., 2002); Alex initially chose to respond on the basis of the physical relations when 
number and size were equally valid attributes. Only toward the end of testing did he begin to respond with 
respect to the symbolic values. Thus, for the first six of these trials, physical comparison, based on an 
obvious dimension, seems to have interfered with the semantic processing in five cases (see Rubinsten 
et al., 2002; note also Piaget, 1952). Of the last six trials, in the final four he responded “none”—that is, 
on the basis of the symbolic value. Given that he was rewarded for both responses, he may simply have 
begun to change the basis for his answers as testing proceeded and he acquired more experience with 
the overall task, which emphasized the symbolic value of the numerals. Such a finding suggests that for 
Alex, like young children, the ability to respond on the basis of relative physical size likely emerges early 
in development and is somewhat automatic (Pepperberg & Brezinsky, 1991; Yonas et al., 1985), whereas 
retrieval of relative numerical representations (e.g., a number line, an object file, some mental canonical 
set) depends on memory and experience. Remember that Alex has not been shown the Arabic numerals 
together with the physical sets representing those quantities. Thus it was not entirely surprising that Alex, 
basically like young children who lack experience, initially chose the simpler comparison (see discussion 
in Girelli et al., 2000). Note that children in these experiments were also given fully incongruent trials 
(e.g., 2:5), which Alex did not experience. How he would perform on such a difficult task is the subject of 
future study.  

Numerals and physical objects. For the majority of trials, Alex correctly responded to the question of 
“What color number bigger/smaller?” whether the targeted response was the numeral or the set of 
objects. Although his overall score was not quite statistically significant (p = .08), the type of errors 
suggests that, with one exception, he did master the task. His one striking form of error, on comparisons 
between any Arabic number and a single object—his consistent response of “none”—suggests that his 
semantic understanding can be overridden when nothing physically appears bigger or smaller. It is not 
possible to determine exactly what cognitive processes were occurring, but the likelihood is that, as in the 
comparisons between differently sized numerals, the simplest, somewhat automatic response (i.e., one 
based on physical size) overrode processes involving memory and experience when comparisons 
involved a perceptual confound of this nature. His other errors involved producing a color not present on 
the tray, which suggests inattention (see discussion in Pepperberg & Gordon, 2005), and, in one of six 
instances in which the array and the numeral represented the same quantity, he responded with the color 
of the collection for the larger mass. Note that this particular trial was the very last of the experiment, and 
both Alex’s attention and motivation were flagging (Pepperberg & Gordon, 2005). Overall, the data 
suggest that Alex does indeed understand the abstract nature of symbols and that he distinguishes mass 
and number (see Mix et al., 2002; Sophian, 2000). 

Also of interest were the few trials in which the value of the Arabic number and the array of physical items 
were not pitted against each other, that is, were congruent. In the first such trial, I used five candy hearts 



versus the Arabic No. 3; when asked “What color number smaller?,” Alex first said “five”—the number of 
the much more desirable candies, but not, as queried, their color. 

Although Alex could ask for anything he wished as a reward, including the candies, possibly their physical 
presence interfered with his response, such as occurs with chimpanzees (Boysen & Berntson, 1995). 
Alex was, however, correct on the second try—he produced the appropriate color—and also on 
subsequent trials of this form, even those involving favored jelly beans. 

Equivalence Relations 

The data show that Alex—a nonmammal—demonstrated emergence of a strong equivalence relationship. 
He had never been trained to associate Arabic symbols with the relevant collections of physical objects 
(see discussions in Dube, McIlvane, Callahan, & Stoddard, 1993; Harrison & Green, 1990; Navarick, 
Bernstein, & Fantino, 1990), nor had he been trained with either the Arabic symbols or vocal labels in 
numerical order. Nevertheless, ordinality emerged as a consequence of his training to associate both 
Arabic numerals and object aggregates with the same vocal label. 

Equivalence ties back to the relationship between language and numerical ability. For some researchers, 
equivalence is the root of symbolic function and a key feature of language (Hineline, 1997; Sidman, 1990; 
Zentall, 2000; note Hayes, Barnes-Holmes, & Roche, 2001); others consider the reverse to be true 
(Horne & Lowe, 1996; Lowe & Horne, 1996; see also Dugdale & Lowe, 1990). No one has, however, 
conclusively produced evidence for either argument (note, however, Hayes et al., 2001). 

The issue likely arises because different types of equivalence exist, which involve different types of 
behavior (Wirth & Chase, 2002) and which may involve different cognitive processes.8 One form, which I 
label weak with respect to its connection to language, is termed functional equivalence, and requires a 
common group of stimuli to control a behavior (Sidman, 1990; Zentall, Clement, & Weaver, 2003). Thus, 
for example, Stimuli A and B both activate a choice of red, whereas Stimuli D and E activate a choice of 
green, and if C is associated with A and B, it will also likely activate a choice of red; likewise for F, D, E, 
and green. In humans, what I term strong equivalence class formation (i.e., stimulus, not functional, 
equivalence) with respect to its relation to language requires showing that an item and its written and 
vocal labels are fully interchangeable (i.e., requires cross-modal transfer; note Sidman, Wynne, Maguire, 
& Barnes, 1989; but see Devany, Hayes, & Nelson, 1986) and the ability to accept multiple 
representations for an item. Thus not only would the written label car and a toy car elicit the label “car,” 
but hearing “car” would elicit choice of either, and car would also elicit choice of the toy and vice versa. If 
a nonmammal with a very limited language-based code but with clear symbol use shows strong 
equivalence, full-blown language is unnecessary for such equivalence (as is a mammalian brain). 
Devising a parallel animal task to test for this form of stimulus equivalence, particularly one including 
cross-modal transfer, is difficult; but cross-modal transfer ensures that the task is as complex as that for 
humans. Sea lions (Zalohus californianus) relate multiple, disparate icons, but not across modalities 
(Kastak, Schusterman, & Kastak, 2001; Reichmuth & Schusterman, 2002; Schusterman & Kastak, 1993, 
1998), and dolphins (Tursiops truncatus) show functional equivalence solely within the auditory mode 
(von Fersen & Delius, 2000). Some language-trained chimpanzees seem to have problems even with 
functional symmetry (i.e., comprehension of a symbol they can use productively; Dugdale & Lowe, 2000), 
although the result seems to be an effect of their initial training, which was primarily use of computer-
based lexigrams to request objects (Savage-Rumbaugh, Rumbaugh, & Boysen, 1980; but see Savage-
Rumbaugh et al., 1993). Chimpanzees trained on America Sign Language (ASL) and who heard English 
in their surroundings were taught to associate ASL signs with speech for objects routinely labeled in 
English (but not shown during training) and, without further training, labeled the objects in ASL—a cross-
modal task (Fouts, Chown, & Goodin, 1976). Pigeons seem not to grasp stimulus equivalence (Lionello-



DeNolf & Urcuioli, 2002) but may show functional equivalence (e.g., Jitsumori, Sieman, Lehr, & Delius, 
2002; Urcuioli et al., 2002), as do rats (Rattus norvegicus; e.g., Nakagawa, 1999). Note that the human 
task avoids reinforcers that are biologically significant events—that is, appearance or delay of food—
which may influence outcomes for animals (review in Astley, Peissig, & Wasserman, 2001). 

Alex’s results demonstrate that strong stimulus equivalence can exist in the absence of a communication 
system isomorphic with human language. What does appear necessary for strong (as compared with 
weak) equivalence is the ability to produce and comprehend symbols—to be able to form and manipulate 
representations to which the symbols refer (note Devany et al., 1986). For Alex, the numerical values of 
the Arabic numerals were learned by virtue of their sharing the same vocal labels as specific object 
aggregates, not with respect to any shared physical attributes; that is, they were learned by virtue of a 
symbolic representation (Wilkinson & McIlvane, 2001). Each item—the Arabic numeral, the spoken label, 
the aggregate collection—had come to stand for the same thing. Thus a parrot who already demonstrated 
emergent symmetry (vocally labels a given item and, without training, indicates the item [e.g., by color] 
when given its vocal label; Pepperberg, 1992) exhibited strong equivalence. Unlike tasks presented to 
other animal subjects (e.g., sea lions) that did not enable testing across modalities, Alex’s task, somewhat 
like that presented to ASL-trained chimpanzees (Fouts et al., 1976), required the same level of 
processing as that presented to humans (Devany et al., 1986). Note, of course, that the vocal mode itself 
is not critical; a chimpanzee trained solely in ASL is also a candidate for such a study. My point is that a 
connection likely exists between symbolic skills and strong equivalence, and between symbolic skills and 
numerical competence, and that animals well trained in a symbolic code are likely to provide intermediary 
links between animals that lack such training and children. 

Brain Mechanisms 

Alex’s data do not, however, provide information about the brain mechanisms that a parrot might use to 
perform these tasks. Some researchers (e.g., Jarvis et al., 2005) have argued that, for vocal learning, 
avian and human brains may be more homologous than analogous. Might the same be true for numerical 
abilities? 

Some evidence exists that, at least for humans, specific brain areas are involved in representations of 
numerical quantities (e.g., Dehaene et al., 2003). For example, the human inferior parietal cortices appear 
responsible for abstract representation of Arabic numerals (Temple & Posner, 1998); the intraparietal 
sulcus (IPS) and inferior parietal lobule are supposedly tied to numerical competence (e.g., Lemer, 
Dehaene, Spelke, & Cohen, 2003) but are distinct from some classical language areas (Cohen, Dehaene, 
Chochon, Lehe´ricy, & Naccache, 2000). Additional data (e.g., Chochon, Cohen, van de Moortele, & 
Dehaene, 1999) suggest that only one human brain area, the right postcentral sulcus, is more active in 
number comparison (i.e., internal manipulation of quantity) than in digit naming, whereas Rickard et al. 
(2000) seem to find bilateral inferior parietal cortical involvement, with only a bias toward the right. 
Rickard et al. actually suggested that significant individual differences may exist for magnitude 
comparisons, possibly because such processing is highly distributed. 

Could the parrot brain be similarly organized for numerical competence? Note, however, that most human 
number comparison tasks involve issues of spatial attention and nonsymbolic comparisons (assuming 
that the Arabic numbers recall a representation of physical quantity and not simply a memorized number 
string), which are also correlated to IPS activity (Coull & Nobre, 1998; Fias, Lammertyn, Reynvoet, 
Dupont, & Orban, 2003; Göbel et al., 2004; Jordan, Schadow, Wuestenberg, Jeinze, & Jäncke, 2004; 
Simon, 1999; but see Spelke & Dehaene, 1999).9 As noted previously (Pepperberg, 2006), such abilities 
are essential for nonhuman survival (e.g., for predator detection, for foraging comparisons), and 
nonhumans are thus likely to have analogous, if not homologous, brain areas (note Walsh, 2003). It is 



interesting to note that some data (Kawashima et al., 2004) suggest that either maturation or experience 
might affect how the brain processes numerical information in humans (note Gordon, 2004; but see 
Temple & Posner, 1998); might the same be true for Alex and other nonhumans given extensive training 
on numerical symbols (e.g., Biro & Matsuzawa, 2001; Boysen & Berntson, 1989)? Complicating the issue 
is that Cohen et al. (2000) specifically stated that the ability to decide nonverbally which of two Arabic 
numbers is larger remains in human patients even with the largest left hemispheric lesions (i.e., when 
producing a vocal number sequence or other verbal tasks involving numbers are impaired; see also 
Colvin, Funnell, & Gazzaniga, 2005; Rickard et al., 2000), suggesting some dissociation between vocal 
and nonvocal abilities that may separate Alex from other number-trained animals.10 Although no 
neurobiological number studies have been performed on birds, possibly the avian nidopallium 
caudolaterale and the dorsolateral corticoid areas, which respectively are likely homologues of the 
posterior parietal cortex and parts of the prefrontal cortex, are involved in numerical processing (A. Butler, 
personal communication, July 5, 2005; E. Jarvis, personal communication, July 12, 2005). Thus, as 
before (Pepperberg, 2006), I suggest that whatever brain areas Alex uses do indeed function in at least 
an analogous manner, given the similarities in data. 

Summary 

In sum, Alex demonstrated that ordinality may be an emergent property in a nonhuman, arising somewhat 
as it does it for small children, even though his training did not replicate the ways in which children are 
exposed to numerical concepts. In fact, Alex’s exposure to and training on numerical tasks differ 
considerably from those of normal children. Note, however, that humans who lack training may not be as 
competent as Alex (Gordon, 2004). Alex also demonstrated that a humanlike form of stimulus 
equivalence is within the realm of a nonhuman, nonprimate, nonmammal that has received some cross-
modal symbolic instruction. Such data begin to provide some answers as to the extent to which human 
and nonhuman numerical concepts may differ and still be comparable. 

 

Notes 

1 Note, however, that some question exists as to whether these brain areas are exclusively involved in 
numerical competence; see Summary and Discussion in, for example, Göbel, Johansen-Berg, Behrens, 
and Rushworth (2004). 

2 Because Alex would be rewarded for the test trials to maintain his interest in the task, he still could learn 
the correct response (which is why the first set of trials will be most important); however, because the 
response is not the number label and he could be asked about either the larger or the smaller value, the 
response would not be a simple association of “If I see X and Y, the answer is Y.” 

3 Remember that the point of these studies was to see if the ordinal relationship would emerge from the 
training that had occurred to date; thus additional training was specifically to be avoided. 

4 Thus, if Alex made one error, the total number of trials presented for a given question would be two and 
his score 1/2; if he made four errors on a given question his score would be 0/4, and I would then go onto 
another question. 

5 A contextless tape is one from which all questions have been edited, so that the transcriber hears only 
Alex’s responses. The reported percentage represented 106 matches of 108 vocalizations. As an 
additional control, I made two transcriptions of a student, new to the lab, as he responded to the same 
type of questions as Alex. The first transcription was live; the second, made several days later, was also 



contextless. The two transcriptions of the student’s vocalizations matched to within 95.8% (68 of 71 
vocalizations). 

6 Wooden numerals are always standardized with nontoxic paints for which Alex has been trained to use 
a specific color label; however, Alex often chews up these numerals as his reward and they are now 
difficult to replace. I therefore had to use commercially available magnetized plastic “refrigerator letters” 
for much of the study, and color errors occurred with these numerals. Paint that would stick to plastic is 
toxic, and because Alex is given the numeral to chew as his initial reward, it could not be used. Note that 
he did not always err on such items and would answer correctly when asked a second time, suggesting 
that the color clearly was on a boundary (if not yellow, it had to be orange). Possibly, too, the error had to 
do with attention or motivation because on separate trials in which he was just asked the color of the 
object, he learned the appropriate label. 

7 Remember, the number of trials was deliberately kept low to avoid training. 

8 Note that some researchers would disagree with this statement (see Vaughan, 1988). 

9 Coull and Nobre (1998) suggested that the left IPS is more active in temporal attention and the right IPS 
in spatial attention, but Fias et al. (2003) found more activity in the left IPS for representation of symbolic 
and nonsymbolic magnitude. Cohen et al. (2000) showed that small bilateral intraparietal foci are more 
active in calculation abilities than in control tasks that also involve similar types of spatial or attentional 
abilities. All cited studies do, however, implicate the IPS in numerical tasks. 

10 And these issues are complicated even more because studies on brain hemispheres and specific brain 
areas suggest activation may differ for values ≤4 or >4 (Colvin et al., 2005; see also Göbel, Rushworth, & 
Walsh, 2001; Göbel, Walsh, & Rushworth, 2001). 
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Appendix 

Complete Set of Symbol Versus Collection Trials for Objects and Numerals 

Object Numeral Bigger vs. Smaller Responsea R vs. L 
4 O wool pompon 6 G bigger G R 
3 Y wood block 4 Ppl smaller Y L 
1 B key 6 Gy bigger none (2×) R 
5 G candy heart 3 Y smaller 5, Y R 
1 Ppl wood stick 2 O bigger none (2×) L 
2 Gy wood ring 5 B smaller Gy R 
1 B key 1 Re smaller none L 
5 Re wool pompon 6 Y bigger Y L 
3 G wood block 5 Re smaller B, G L 
3 Ppl jelly bean 1 O biggerb Ppl R 
2 Gy key 4 B bigger B L 
5 B wood block 5 G smaller none R 
1 Y chalk 5 G bigger none (2×) L 
3 G jelly bean 6 Re bigger Re L 
2 B key 2 O smaller none R 
4 B wood rod 5 Ppl smaller G, B R 
4 O wood block 2 Gy biggerb O R 
2 Ppl wood ring 3 O smaller Ppl L 
2 Gy wood block 1B biggerb Gy R 
1 B jelly bean 4 Re bigger none (2×) L 
6 O wool pompon 6 B smaller none R 
2 O key 6 Y smaller O R 
1 G wood block 3 Re bigger none (2×) L 
3 Re wool pompon 3 Y bigger none L 
3 Y jelly bean 2 Re smallerb Re L 
4 B plastic spool 4 O bigger B, none R 

Note. Last column states whether the smaller value was to Alex’s right (R) or left (L). B = blue; G = green; Gy = 
grayish-black; O = orange; Ppl = purple; Re = red (Alex’s label is “rose”; Pepperberg, 1981); Y = yellow. 
a If Alex said “none” when there was one object and one numeral, the response was reported as an error, and he 
was queried only a second time, not four times. 

b Designates trials in which the object array and Arabic numeral are consistent with the question posed. 
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