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Abstract:  Ray-finned fish are often excluded from the group of non-human animals 
considered to have phenomenal consciousness. This is generally done on the grounds that the 
fish pallium lacks a sufficiently expansive gross parcellation, as well as even minimally 
sufficient neuronal organization, intrinsic connectivity, and reciprocal extrinsic connections 
with the thalamus to support the subjective experience of qualia. It is also argued that fish do 
not exhibit the level of behavioral flexibility indicative of consciousness. A review of 
neuroanatomical, neurophysiological and behavioral studies is presented which leads to the 
conclusion that fish do have neurobiological correlates and behavioral flexibility of sufficient 
complexity to support the hypothesis that they are capable of phenomenal consciousness. 
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1. INTRODUCTION 
 

Two connected theses will be defended in this paper. The first thesis is that ray-finned 
fishes of the teleost subclass (Actinopterygii; hereafter referred to simply as fishes)1 are 
sentient. The second thesis is that the pallium contributes to sentience in these species. Allen 
and Trestman (2016) equate phenomenal consciousness and sentience.  I will adapt their use 
of the term and define sentience2 as at least the minimal capacity to have subjective 
experience of the qualities associated with external and internal sensations, as well as 
affective and motivational states. The consequence of this capacity is that there is something 
that it “feels like” to be the individual, human or animal, that has subjective experience (Nagel 
1974). 

I argue that there is something it feels like to be a fish. Others disagree, and usually 
ground their disagreement on two general arguments. The first argument is that fishes lack 
the neuroanatomical substrates necessary for consciousness.  This argument assumes that a 
layered neocortex, or a structure homologous to it, with a number of anatomically distinct 
divisions and reciprocal anatomical connections among them, is required for even minimal 
sentience. Furthermore, massive reciprocal connections between the neocortex and the 
thalamus are needed. Because the fish pallium is not homologous to the mammalian 
neocortex, and its reciprocal connections with the thalamus are sparse, fishes lack the 
required neuroanatomical substrates for sentience (Cabanac et al. 2009; D. Edelman et al. 
2005; Key 2015, 2016a; Rose 2002, 2007; Rose et al. 2012; Seth et al. 2005). The second 
argument follows naturally from the first. It is that fishes do not exhibit behaviors that require 
sentience. On this view, all of the behaviors observed in fishes, regardless of how complex 
they appear to be, are explicable by reference to simple sensory–motor reflexes, species-
typical behaviors, or procedural/implicit learning and memory. I contend that both of these 
arguments fail. 

In this target article I will present research supporting the hypothesis that the fish 
brain is neuroanatomically complex enough to support sentience. I will also present evidence 
that the pallium of the fish has neurophysiological activity similar to correlates of sentience 
in mammals. Finally, I will provide selected examples of behaviors generally thought to 
require sentience in humans. 

 
2. SENTIENCE IN FISHES: THE OPTIC TECTUM 
 

Several theories propose that sentience emerged in animals when the hindbrain, 
midbrain and diencephalic nuclei first evolved (e.g., Damasio 2010; Feinberg and Mallatt 
2013, 2016; Merker 2007; Panksepp 2005). These theories differ in neuroanatomical detail 
and in the physiological and behavioral processes they emphasize. They will not be reviewed 
here (see Feinberg and Mallatt 2016, chapter 7, for a discussion). However, they have the 
following in common: (i) proposing that at least minimal sentience is possible without a 
neocortex, and (ii) attributing a role in the generation of sentience to the optic tectum. 

                                                           
1 Cartilaginous fishes, such as sharks and rays, from the class chondrichtyans are not included in this 
discussion.  
2 What I am calling sentience is, in general, the same process that Feinberg and Mallatt (2016) call sensory 
consciousness and that G. Edelman (1989) refers to as primary consciousness. 
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Figure 1. The drawings in this figure are provided as aids in visualizing the physical 

relationships among the major divisions of the fish brain discussed in the text. They are 

generalized representations and may therefore deviate in detail from the specific 

descriptions given in the cited references. (A) Schematic of a longitudinal (sagittal) section of 

the fish brain. The drawing represents a parasagittal section from the location of the dashed 

line in (B). That is, it comes from a location slightly away from the midline of the brain. 

Abbreviations: Cb – cerebellum; Ha – habenula; Hy – hypothalamus; OB – olfactory bulb; OT 

– optic tectum; Th – thalamus; P – pituitary; PgC – preglomerular complex. (B) A schematic 

cross section from the dorsal through the ventral surface of one hemisphere of the fish 

telencephalon. The section is drawn to represent the approximate anterior-posterior level of 

the brain demarcated by the vertical line in (A). It shows the locations of the pallial divisions 

given by Nieuwenhuys and Meek (1990). Abbreviations (all beginning with D refer to 

divisions of the pallium): DD – dorsodorsal; DMd – dorsomedial dorsalis; DLv – dorsomedial 

ventralis; DLd – dorsolateral dorsalis; DC – dorsalis centralis; DP – dorsalis posterior; VT – 

ventral (subpallial) telencephalon; DMv – dorsomedial ventralis. 

 

 
The fish optic tectum (Figure 1A) is more involved in sensorimotor integration in 

fishes than its homolog, the superior colliculus, is in mammals. All sensory modalities present 
in any given teleost species, with the exception of olfaction, are represented in the tectum. 
However, visual input is especially strong and the tectum is generally viewed as the primary 
visual center in fishes (Feinberg and Mallatt 2013, 2016; Li 2016; Meek 1983). As such, the 
tectum is crucial for the transformation of visual input into directed, adaptive global motor 
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output. This transformation begins with the creation of an accurate point-by-point 
representation of visual space on the retina. Feinberg and Mallatt (2016) refer to this 
representation as sensory isomorphism. Retinal input to the tectum generates an isomorphic 
neural representation of visual space. Feinberg and Mallatt take it as axiomatic “that mental 
images are a part of primary, sensory consciousness and, therefore, contribute to “something 
it is like to be.) The neural representation of the world in the tectum is experienced 
subjectively as mental images. On my view, this is an important insight into what it means for 
a neural system to participate in the generation of sentience. 

 
2.1 Tectal Neuroanatomy 
 

 But what evidence is there that the optic tectum is a crucial part of such a neural 
system? Others, in particular Feinberg and Mallatt (2013, 2016) and Merker (2007), have 
provided extensive reviews of this evidence. I will not replicate these reviews, but will 
provide a brief account of data indicating that the optic tectum, and its extrinsic and intrinsic 
connections, meet the requirements to be an anatomical substrate of sentience in fishes. I will 
discuss only the visual modality, but the basic organizational pattern also applies to the other 
sensory modalities represented in the tectum. 

One requirement is that the visual world be accurately represented in the tectum. 
Isomorphic retinal input mediated by the excitatory neurotransmitter glutamate terminates 
primarily in the uppermost of the six neuronal layers of the tectum on the opposite side of 
the brain. Both anatomical and electrophysiological studies indicate that the pattern of 
termination reflects the accurate point-by-point visual representation of the world created 
on the retina (Nevin et al. 2010; Meek 1983; Venegas and Ito, 1983). Another requirement is 
modulation of the primary sensory pathways by intrinsic excitatory and inhibitory 
interneurons. Primary sensory input to the tectum can be amplified by positive feedforward 
and feedback circuits created by excitatory glutaminergic interneurons. Intrinsic inhibitory 
circuits created by interneurons that use γ-aminobutyric acid (GABA) as a transmitter 
provide for temporal stabilization and spatial sharpening of activity within the excitatory 
circuits (Kardamakisa et al. 2015; Nevin et al. 2010). One function of these inhibitory circuits 
may be to improve discriminability of objects in the fish’s visual field. Ablation of these 
neurons selectively impairs prey capture in zebrafish (Del Bene et al. 2010), possibly because 
the prey is perceived as larger than it is and because predator avoidance rather than prey 
approach behavior is selected (Barker and Baier 2015). 

The tectum also receives input from mesencephalic and hindbrain nuclei, as well as 
the diencephalic and telencephalic regions, including the pallium. As will be discussed below, 
this input allows memory and emotion to influence tectal output to brainstem structures that 
regulate motor programs. The output of the tectum arises from neurons located in its deeper 
layers. This output terminates in the telencephalic, diencephalic, and brainstem sites that 
provide input to the tectum, and, most importantly, in premotor brainstem nuclei that 
directly control behavior. These nuclei send input back to the tectum, thereby providing rapid 
feedback to refine future output (Kinoshita et al. 2006; Meek 1983; Nevin et al. 2010; Sato et 
al. 2007). 

In sum, the extrinsic reciprocal neuronal connections and the intrinsic neuroanatomy 
of the teleost tectum are complex enough to support the reentrant computational processes 
proposed to underlie sentience in mammals (Crick and Koch 2003; G. Edelman 1989; G. 
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Edelman et al. 2011; Seth et al. 2005). In mammals, neural and behavioral markers of such 
computational processes are associated with the neocortex and its connections to the 
thalamus. If the conclusion reached above is correct, then it should be possible to find similar 
markers associated with the tectum of fishes. Here I will provide a specific example. 

 
2.2 Selective Attention and Tectal Neurophysiology  
 

Feinberg and Mallat (2016) include “mechanisms for selective attention to stimuli” as 
one of their criteria for sensory consciousness, the process that I am calling sentience. 
Selective attention may be a legitimate criterion for the presence of sentience, but 
researchers in this area do not agree as to how this may be. Sentience and selective attention 
are generally not considered to be the same process, and evidence indicates that either can 
be present without the other (Baars 1997; van Boxtel et al. 2010; Howe et al. 2009; Tononi 
and Koch 2015). However, it seems undeniable that the two are related. I suggest that some 
form of sentient pre-attentional awareness of the world exists as long as an adequate level of 
arousal and general, nonspecific awareness of the environment are present. However, in the 
absence of selective attention, the contents of sentience required to produce specific actions 
necessary for survival, such as finding food or avoiding a predator, are absent. On this view, 
then, selective attention varies the force and focus of sentience. The implication is that, if 
sentience did not exist, then the processes of selective attention would have no work to do. 
Therefore, they would not exist. But it is indisputable that they do. Thus, agreeing with 
Feinberg and Mallatt, I argue that selective attention is a legitimate criterion for the presence 
of sentience. 

A principal function of selective attention in the visual modality is to guide visual 
search for salient environmental items, whether these items are places of safety, a predator 
or food. In primates, visual search for salient environmental targets is conducted in either a 
parallel or serial mode (Itti and Koch 2001). The parallel mode guides attentional processes 
when the target object is distinct from surrounding distractor objects. Reaction time for 
detecting the target is very short in the parallel mode and is not lengthened by increasing the 
number of distractor objects. In this mode, the target is said to “pop-out” from the background 
distractors. Attentional processes are guided by the serial mode when the distractor items 
are similar to the target item. Increasing the number of distractors increases reaction time 
and no pop-out occurs. In primates, neocortical areas are associated with these search modes 
and consequent action selection (Bichot and Schall 2002; Li 2016).  

Ben-Tov et al. (2015) have demonstrated both parallel and serial visual search modes 
in the archer fish and have found neural correlates of these processes in the optic tectum. 
Archer fish are able to prey on insects by hitting them with water forced from their 
specialized mouths. The insect is the salient object and the fish executes a visual search to 
locate it. Ben-Tov et al. used small rectangular bars as targets and established that the 
reaction time for archer fish to shoot a bar moving either faster than, or in the opposite 
direction from, distractor bars did not change as the number of distractors increased from 4 
to 8. That is, the fish demonstrated the pop-out effect characteristic of the parallel mode of 
visual search. When the size of the bar was salient, reaction times for target selection 
increased as the number of distractors increased, indicating that the serial mode was being 
used.  
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Ben-Tov et al. identified neural correlates of pop-out in the tectum of archer fish. 
Discharge rates of tectal neurons correlated with characteristics of the selected target. 
“Speed-contrast” neurons fired at higher than baseline rates only when the speed of the target 
was salient while “direction-contrast” neurons fired at higher rates only when the target 
direction was salient. They also found “both-contrast “neurons that increased their discharge 
rates under either saliency condition.  

Ben-Tov et al. also conducted an experiment in which the target was defined by a 
combination of speed and direction. Compared to selection rates for a single target feature, a 
target differentiated by both features was significantly more likely the be selected. When 
neurophysiological responses were investigated, Ben-Tov et al. found that some of the 
neurons that increased their firing rate to a single target increased the rate significantly more 
in the presence of the additive target. 

In sum, archer fishes use the same attentional modes used by primates to construct a 
neural map of salient stimuli from a pre-attentional isomorphic neural map of the visual 
world. Both the isomorphic and salient neural structures are located in the tectum. The maps 
are dynamic and include neuronal circuits capable of associating two distinct characteristics 
of a visual stimulus (speed and direction of movement) to effectively drive a behavioral 
response. This capability may be interpreted as representing a simple form of sensory 
binding. 

 
2.3 Summary 

 
Several criteria have been suggested for a brain structure to qualify as a substrate of 

sentience (e.g., Crick and Koch 1990; 2003; G. Edelman 1989; Feinberg and Mallatt 2016; Seth 
et al. 2005). Each of these is a criterion for sentience, not sentience itself. One criterion is 
complexity of neural architecture and connectivity. The tectum meets this criterion. Two 
other criteria are isomorphic representation of sensory input and segregation of the sensory 
modalities. Isomorphic sensory maps are produced in the tectum. Additionally, the neural 
representation of each sensory modality is segregated from the others within the tectum. 
Another criterion is the presence of neural mechanisms for selective attention. The tectum 
has these mechanisms. The ability to merge, or bind, sensory input into a coherent image 
which can be used to direct motor output is also included. The additive effects of two distinct 
characteristics of a visual stimulus suggest that the tectum has this capacity. From this 
analysis, it is reasonable to hypothesize that the tectum is at least a part of the physical 
substrate of sentience in fishes. 

Critics of this hypothesis are likely to insist that sentience requires structures that are 
homologous to the mammalian neocortex and thalamus and to maintain that the tectum and 
its interconnections failed to meet this requirement (e.g., Key 2015, 2016a, b; Rose 2002, 
2007; Rose et al. 2012). It is also likely that critics would explain the ability of archer fish to 
discriminate between targets and distractors as some combination of reflex behavior and 
implicit discrimination learning. I admit there is room for such an argument. However, an 
explanation of the results of an experiment by Schuster et al. (2006) requires more than 
invoking implicit discrimination learning. 

Although moving targets are salient for archer fish, the ability to hit one reliably takes 
practice. Schuster et al (2006) trained archer fish to reliably hit a target 60 cm above the 
water traveling at 60 mm/s. As with the experiment by Ben-Tov et al. (2015), these results 
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can be explained in behavioristic terms. However, the results of the second part of the 
experiment by Schuster et al. does not admit of such a simple explanation. They found that a 
second group of fishes, who only observed another fish hitting a moving target, were able to 
hit the target with a high rate of accuracy on their first opportunity to do so. It is difficult to 
explain this observation without reference to the ability of the observers to form and store in 
memory a mental image of other fish successfully executing the task. This is an example of 
declarative memory, which requires conscious awareness (Cohen et al. 1997; Eichenbaum 
and Cohen 2014; Squire et al. 2015), and is, therefore, a marker for the presence of sentience. 

 The proposal that declarative memory is necessary for the ability of archer fish to 
learn from observation leads to my second thesis  that the pallium is a necessary component 
of the neural substrate for sentience in fishes. In this I diverge somewhat from the theory 
proposed by Feinberg and Mallatt (2016). Those authors do include a role in memory 
processing for the pallium in their model but they do not grant the pallium any place in the 
generation of mental images. Rather, the pallium simply modulates motor commands issued 
by the tectum (Feinberg and Mallatt 2016, Kindle edition, location 2580). I argue below that 
the pallium has a more central role in the formation of mental images — and, hence, in 
sentience in fishes — than simple modulation of tectal processing. 

 
3. SENTIENCE IN FISHES: PALLIAL ANATOMY 
 
3.1 Overview of Sensory-Specific Connections 
 

The teleost pallium receives a variety of modality-specific sensory inputs (Giassi et al. 
2012b; Ito and Yamamoto 2009; Northcutt 2006; Yamamoto and Ito 2008). As in mammals, 
all sensory modalities in fishes, other than olfaction, reach the pallium through a subpallial 
relay. Unlike mammals, the primary sensory relay is not the thalamus. The thalamus does 
contribute input to the teleost pallium (Echteler and Saidel 1981; Ito et al. 1986), but the 
diencephalic preglomerular complex (PgC; Figure 1B) — a component of what Mueller 
(2012) named the “wider thalamus” — is the principal source of its monosynaptic sensory 
input (Demski 2013; Giassi et al. 2012b; Mueller 2012; Northcutt 2006; Yamamoto and Ito 
2008). The PgC receives topographically organized input from the tectum (Giassi et al. 2012a; 
Northcutt 2006) and its output to the pallium maintains modality segregation. Recognizing 
this, Ito and Yamamoto (2009) concluded that: “Ascending pathways mediated by the 
preglomerular complex enumerated above exhibit a considerable degree of modality-specific 
organization similarly to mammalian thalamocortical pathways” (p. 117). For example, visual 
input terminates most heavily in the dorsal lateral pallium (DLd/DLv in Figure 1). Indeed, the 
DLd has been proposed as the visual pallium for many teleosts (Demski 2013; Saidel et al. 
2001). Cell clusters in different parts of the DM receive auditory, gustatory, and lateral line 
input (Demski 2013; Northcutt 2006; Prechtl et al. 2008). In some species, the DD receives 
some sensory input, but its major connections are with the other pallial divisions.  

The DC receives comparatively little subpallial input but has reciprocal connections 
with other pallial divisions and is the major source of pallial output to the tectum, the PgC, 
and numerous other subpallial sensory-motor structures (Echteler and Saidel 1981; Giassi et 
al. 2011; Giassi et al. 2012b, c; Ito et al. 1986; Murakami et al. 1983).  Therefore, the large 
neurons in the DC can affect motor programs or modulate sensory input to other pallial 
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divisions through its connections to the diencephalic and midbrain motor and sensory 
processing sites. 

 
3.2 Non-Specific, Modulatory Pallial Inputs 
 

In addition to the qualities associated with sensory input from the environment, 
sentience includes subjective feelings associated with motivational and affective states such 
as hunger, thirst and fear. These states are supported not by sensory-specific input from 
subcortical structures, but by subcortical input that terminates throughout the cortex (Purvis 
et al. 2011). In mammals, these systems are associated with the cholinergic, dopaminergic, 
GABAergic, serotonergic, and noradrenergic neurotransmitter systems. The same 
neurotransmitter systems are found in fishes (Echteler and Saidel 1981; Giassi et al. 2012b, 
c; Giraldez-Perez et al. 2013; Mueller and Guo 2009; Murakami et al. 1983; Schweitzer et al. 
2012). The presence of dopaminergic and serotonergic input suggests that motivational and 
affectual systems found in mammals also exist in fishes. These neurotransmitters are 
involved in guiding approach and avoidance behaviors (e.g., Dayan 2012). Feinberg and 
Mallatt (2016) rightly include the feeling states associated with these behaviors in what they 
call sensory consciousness and what I am calling sentience. The existence of these 
neurotransmitter systems in fishes provides additional support for sentience in teleosts. 

Additionally, cholinergic, noradrenergic and serotonergic afferents to the cortex affect 
memory, attentional processes, and states of consciousness (e.g., awake or asleep, dream 
sleep or non-dream sleep) in mammals (Richerson et al. 2012). The presence of widespread 
input containing these neurotransmitters from subpallial structures, particularly the 
midbrain and hypothalamus, to the pallium suggests the existence of common modulatory 
mechanisms for these functions in fishes and mammals.  

 
3.3 Excitatory and Inhibitory Connections of the Pallial Divisions 

 
Research from Leonard Maler’s laboratory at the University of Ottawa (Elliot et al., 

2017; Giassi et al. 2012 a, b, c; Trinh et al. 2015) exploring the pallium of two species of weakly 
electric knifefish has confirmed the gross pattern of intrapallial connections observed in 
other teleost species (Echteler and Saidel 1981; Ito and Yamamoto, 2009; Northcutt, 2006), 
and has added important details. Excitatory neurons are required for positive feedforward 
and feedback control of local circuits. Inhibitory neurons are necessary for temporal 
stabilization and spatial sharpening of activity within these circuits. 

Using immunocytochemical markers and localized injections of neurotracers, Giassi 
et al. (2012b, c) described the circuitry created by excitatory glutaminergic neurons. The DL 
has reciprocal excitatory connections to the DD, thus permitting feedforward/feedback 
excitation between the DL and DD. The DC receives excitatory glutaminergic input from the 
DL. Similar to what has been found in other species, the knifefish DC is the principal source 
of excitatory pallial output to diencephalic, midbrain and hindbrain targets, each of which 
returns excitatory input to the DL. These three regions of the fish pallium therefor have 
circuits that can support reentrant processing, one of the proposed requirements for a 
neurobiological substrate of sentience (e.g., Crick and Koch 2003; G. Edelman 1989; G. 
Edelman et al. 2011). 
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Mueller and Guo (2009) observed presumptive inhibitory GABAergic neurons in the 
DL, DD, DM and DC in zebrafish. Giassi et al. (2012a, c) confirmed this observation in knifefish.  
Giassi et al. (2012c) also observed rich intrinsic GABAergic plexuses and numerous 
GABAergic terminals, particularly in the DL. The source of some of this GABAergic 
innervation is the telencephalic subpallium (Elliot et al. 2017; Giassi et al. 2012c; VT in Figure 
1B) which, in turn, receives excitatory glutaminergic input from the DM (Gaissi et al. 2012b, 
c). Whether the source is intrinsic or extrinsic, GABAergic terminals within the DL, DM and 
DD modulate the activity of excitatory glutaminergic neurons (R. Vargas et al. 2012). 

 
3.4 Pallial Layers and Cryptic Columns in the DL 

 
Giassi et al. (2012c) investigated the extrinsic connections of the DL and the other 

pallial divisions of the knifefish. In order to study the intrinsic connections of the DL, Trinh et 
al. (2015) incubated slices of the pallia from knifefish in nutritive media. They located the DL 
in the slice and used a microscope to guide injections of axonal tracers into discrete parts of 
it. Analysis of the resulting data indicated that the trajectory of the intrinsic axons arising 
from some of the large neurons within the DL separate it into 60-µm-thick lamina along its 
horizontal axis. Axons from other large neurons have projections extending 100 to 150 µm. 
These projections delineate columns along the vertical axis. Each column connects 
reciprocally to adjacent columns creating local recurrent networks throughout the DL. Thus, 
the DL of the knifefish pallium exhibits both a layered and a columnar organization.  

 Such a neuronal organization is characteristic of the mammalian cortex, but Trinh et 
al. (2015) emphasize that the columns observed in knifefish are not structurally discrete in 
the same way as columns in regions of the mammalian neocortex, such as the somatosensory 
cortex. Rather, they resemble the overlapping cryptic ocular dominance columns found in the 
visual cortex (e.g., Kaskan et al. 2007). Cryptic columnar organization allows small changes 
in input to one column to cause a slight shift in neuronal activity in overlapping columns, 
thereby allowing spatiotemporal integration of sensory input and binding. 

 
3.5 Fish Pallial Anatomy: Summary 
 

The research reviewed above indicates that the fish pallium has reciprocal 
connections with subcortical structures that provide it with both specific sensory and non-
specific modulatory input. The specific sensory input to the pallium arises primarily from the 
PgC and is analogous to the reentrant network between the thalamus and cortex in mammals 
which has been proposed to correlate with conscious experience of environmental stimuli. 
The non-specific input comes from ventral telencephalic, diencephalic and brainstem nuclei, 
and contains neurotransmitters associated with affective and motivational states in 
mammals. My conclusion is that the teleost pallium has the neuroanatomical complexity 
necessary to contribute to sentience. In the next section, I will give evidence that the pallium 
also exhibits neurophysiological markers of sentience.  

 
 
 
 
 



Animal Sentience 2017.010:  Woodruff on Fish Feel 

10 
 

4. SENTIENCE IN FISHES: PALLIAL NEUROPHYSIOLOGY 
 

4.1 Pallial Rhythmic Electrical Activity 
 
There are few relevant neurophysiological experiments, and they were not specifically 

designed to evaluate the pallium for correlates of sentience. However, their results suggest 
the fish pallium exhibits generalized electrophysiological responses correlated with several 
criteria of sentience in mammals. For example, recordings of the electroencephalograms 
from the skulls of Atlantic salmon (E. Lambooji et al., 2010), African catfish (E. Lambooji et al. 
2006) and the turbot (B. Lambooji et al. 2015) demonstrated that the pallium of the fish 
generates electrical activity in the delta (0.5–4 Hz), theta (4-8 Hz), alpha (8–14 Hz), beta 
(14–30 Hz) and gamma (30 Hz and higher) bandwidths. The same spectrum of EEG 
frequencies is generated by the mammalian cortex and correlates with levels of arousal and, 
at the gamma frequency, with attentional processes and possibly with sensory binding. 
(Baars et al. 2013; Crick and Koch 1990; 2003; Edelman 2003; Orpwood 2013; Tononi and 
Edelman 1998). In addition to generalized electrophysiological responses similar to those 
found in the mammalian cortex, the teleost pallium shows modality-specific, sense-evoked 
responses (Prechtl et al. 2008; Elliot and Maier 2015). 

 
4.2 Sensory-Evoked Activity 

 
Prechtl et al. (1998) recorded evoked action potentials from the pallial neurons of 

weakly electric elephant nose fish in response to auditory, visual, mechanical (water 
movement), lateral line and electrical field stimulation. The electrical field stimulation was 
not noxious, but intended to mimic stimulation produced by the fish itself, or by conspecifics. 
In accord with the anatomical data described above, responses to visual stimuli were 
observed predominantly in the lateral pallium. Responses to electrical stimuli also occurred 
more laterally in the pallium, but were clustered toward its posterior (toward the tail) pole. 
Mechanical-stimuli-evoked responses mostly from neurons located ventromedial to the area 
where responses to electrical stimuli predominated and auditory-evoked responses were 
predominantly found in the anterior medial pallium. It is interesting that Prechtl et al. also 
observed that the sensory stimuli used in their study produced field potentials that oscillated 
in bandwidths from 15 to 55 Hz. The higher end of these bandwidths corresponds to the 
gamma frequency proposed, as noted previously, to be the neurobiological signature of 
attentional processes and sensory binding. 

I indicated above that the primary interconnectivity of the DD is with other pallial 
divisions. Using electric brown ghost knifefish, Elliot and Maler (2015) made extracellular 
and patch-clamp recordings from DD neurons in response to electrosensory or acoustic 
stimulation. Extracellular recording revealed that DD neurons exhibited sustained discharge 
to electrosensory stimulation. It is interesting that the onset latency for DD neurons to 
respond to electrosensory stimulation was substantially longer than that found for medial 
pallial neurons to respond in the study by Prechtl et al. (1998). This finding is compatible 
with the anatomical data that indicate the DD does not receive significant direct sensory 
input, but adds further processing to sensory input to the DL and DM. Patch-clamp recordings 
indicated that the membrane potential for DD neurons went from the persistent “down” state 
of approximately -70 mV to an “up” state of approximately -45 mV in response to 
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electrosensory stimulation. The shift to a smaller negative membrane voltage indicates an 
increase in neuronal excitability, and these responses correlated with the frequency of 
extracellular spiking. Acoustic stimulation produced similar effects. In interpreting these 
results, Elliot and Maler (2015) hypothesized that “Up states are induced by complex and 
variable pallial network activity that intervenes between sensory input and DD cells” (p. 
2075). The results of this experiment suggest that the DD may be involved in longer-term 
cognitive processing of input to other pallial divisions and can be taken as support for the 
proposal that the DD serves as an association region, thereby expanding the regional 
complexity of the pallium. 

 
4.3 Fish Pallial Neurophysiology: Summary 

 
Neurophysiological studies show that neurons in the fish pallium generate the same 

spectrum of EEG frequencies and waveforms observed in mammals. Pallial neurons also 
respond to sensory stimulation with specific evoked responses that show some segregation 
by sensory modality. Sensory stimulation also evokes EEG activity in the gamma bandwidth, 
a presumed correlate of attentional processes and sensory binding. Additionally, 
electrophysiological data support the hypothesis, generated from anatomical data, that a part 
of the pallium, the DD, possibly serves an associative function. These electrophysiological 
data are consistent with the hypothesis that the fish pallium contributes to the production of 
sentience in fishes. 
 
5. THE PALLIUM AND BEHAVIORAL MARKERS OF SENTIENCE 

 
The purpose of this section is to discuss experiments that link behavior of fishes to 

both the pallium and sentience. I will not discuss the substantial body of behavioral research 
that is supportive of my thesis that fishes are sentient because most of it was not designed to 
evaluate the role of the pallium in behavior. Additionally, much of it has been reviewed in 
recent publications (Allen 2013; Balcombe 2016; Braithwaite 2010; Brown 2014, 2016; 
Brown et al. 2011; Sneddon 2015). 

Two general categories of behavior have dominated the published literature 
concerned with the behavioral functions of the fish pallium. The reason for this dominance 
stems from the anatomical, developmental, and molecular research that points to the medial 
pallium (DM – DMd and DMv in Figure 1B) of fishes as a homolog to the mammalian 
amygdala, and to the lateral pallium (DL – DLd/DLv) as a homolog to the mammalian 
hippocampus (Ganz et al. 2015; Harvey-Girard et al. 2012; Nieuwenhuys and Meek 1990; 
Northcutt 2006). These homologies led to the hypothesis that lesions of the DM or DL would 
have the same behavioral effects as lesions of the amygdala or hippocampus in mammals.  
Research generated primarily by researchers at the Universidad de Sevilla has largely 
supported this hypothesis (Portovella et al 2004a, b; Vargas et al. 2006; 2012). 
 
5.1 Avoidance Behavior and the Pallium 

 
As indicated earlier, I follow Allen and Trestman (2016) and define sentience broadly 

as the ability to have any subjective experience. This definition differs from that of Feinberg 
and Mallatt (2016) who regard sentience as the affective component of sensory 
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consciousness. Despite this definitional disagreement, I agree with their requirement that 
“for an animal to be ‘sentient’ it must be capable of experiencing an affective state” (Feinberg 
and Mallatt 2016, Kindle location 3055). 

Lesions of the DM impair learned behaviors motivated by aversive stimuli in the same 
way that destruction of the amygdala does in mammals (Davis 1992). For example, Portavella 
et al. (2004a, b) assessed the effects of either DM or DL lesions on the ability of goldfish to 
learn a shuttle-box avoidance task. A shuttle box has two compartments. The fish had to learn 
to swim from one box to the other in response to presentation of a colored light (the 
conditioned stimulus, CS) in order to avoid electrical shock (the unconditioned stimulus, US). 
Portavella et al. found that DM lesions had no effect on escape from electrical shock, but 
significantly impaired learning of the avoidance response to the CS. DL lesions had no effect. 

These results support the hypotheses that integrity of the DM is necessary for 
successful performance of a learned, aversively-motivated behavior and that it is a homolog 
of the amygdala. However, whether sentience is required to explain the acquisition of shuttle-
box avoidance can be questioned. The answer to this question depends on interpretation of 
the two-process theory usually used to explain shuttle-box avoidance learning (Mowrer 
1960). The first process is classical conditioning. The CS produces a conditioned emotional 
response after repeated association with the innate aversive emotional response produced 
by the US. The second process is operant conditioning. On one interpretation, the innate and 
conditioned emotional responses are equated to experience of fear. Reinforcement occurs 
when the avoidance response reduces fear (Mowrer 1960). Several publications describing a 
variety of other procedures to assess avoidance behavior in intact members of several species 
of fish support this view (e.g., Braithwaite 2010; Braithwaite and Boulcott 2007). If fear is 
considered to be a consciously experienced state, then the ability of fishes to learn shuttle-
box avoidance supports the hypothesis that they are sentient. Under this interpretation, the 
DM is part of a distributed neural system that generates the feeling of fear. Subpallial 
structures comprise the core of this system, and, in conjunction with the DM, participate in 
elaboration of the negative affectual component of sentience in fishes.  

 
5.2 Declarative Memory and the Pallium 
 

Declarative memory in humans and other mammals is associated with availability for 
conscious recollection and provides flexible guidance to behavior in different contexts. 
Behaviors that require relational learning among stimuli distributed either over time or in 
space are considered to be exemplars of declarative memory. Transitive inference (TI) 
provides an excellent example (Cohen et al. 1997; Eichenbaum and Cohen 2014). TI is the 
ability to infer a relationship between items that have not been previously directly compared. 
First observing that A<B, B<C, and C<D, and then deducing that A<D is an example of TI. In 
humans TI requires conscious awareness of the relationships (Smith and Squire 2005). Thus, 
the presence of TI in a non-human species can be taken as an indication that the species is 
sentient. 

Grosenick et al. (2007) demonstrated that male cichlid fish (Astatotiliapia burtoni) 
exhibit TI in an observational learning situation. Male A. burtoni inevitably fight for territory. 
A bystander male (BM) was placed in the center of an arena surrounded by five small 
compartments (A through E) with transparent walls. Each compartment housed a combatant 
fish (CF). CF B was introduced into CF A’s compartment, then CF C into CF B’s, and so on. Each 
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invader lost the ensuing fight. For example, CF A beat CF B and CF D beat CF E. CF A and CF E 
were then placed in separate transparent chambers and the time the BM spent near each fish 
was recorded. This was repeated for CF B and CF D. Although CF A had not fought with CF E, 
nor CF B with CF D, the BMs consistently spent more time in the vicinity of the losers (B and 
E) than they did in the vicinity of winners. This is a clear indication of TI and supports the 
hypothesis that fish are sentient. 

Destruction of the hippocampus significantly impairs behaviors associated with 
declarative memory (Eichenbaum and Cohen 2014; Squire et al. 2015) including TI (Smith 
and Squire 2005). Because the DL of fishes is considered to be the homolog of the 
hippocampus, lesions of the DL should disrupt behaviors associated with declarative memory 
in fishes. The effects of DL lesions on TI in fishes have not been demonstrated, although it is 
a testable hypothesis that DL lesions would impair TI in archer fishes. However, other 
behaviors requiring relational learning have been identified in fishes (Gerlai 2017), and the 
effect of DL lesions on some of these has been demonstrated. 

Declarative memory is distinguished from procedural or implicit memory which is 
unconscious and is characterized by inflexible stimulus response associations. Classical 
conditioning is regarded as a characteristic example of procedural memory. It is dependent 
upon the integrity of the cerebellum regardless of the temporal relationship between the CS 
and the US (Christian and Thompson 2003). The hippocampus is not required for procedural 
memory, including classical conditioning, except under a specific experimental design known 
as “trace” conditioning. In the trace procedure, the US is turned on at some time after the CS 
been turned off. Thus, the term “trace” refers to the assumption that there must be some trace 
of the CS remaining to relate it to the US across the temporal gap between the offset of the CS 
and the onset of the US. This procedure differs from the “delay” procedure in which the US 
comes on while the CS is still present. Hippocampal destruction in humans and other 
mammals has no effect on conditioning in the delay procedure (Christian and Thompson 
2003). Nor does destruction of the DL in the goldfish impair classical conditioning when the 
delay procedure is used (Gómez et al. 2016; Rodríguez-Expósito et al. 2017). 

However, hippocampal destruction does impair acquisition of classical conditioning 
when the trace procedure is employed in both mammals (Weiss et al. 2015) and goldfish 
(Gómez et al. 2016; Rodríguez-Expósito 2017). These results do not mean that the cerebellum 
is not important in trace conditioning, as cerebellar destruction impairs trace conditioning in 
both mammals and fish. They are, however, interpreted to indicate that the hippocampus (or 
DL in fishes) functions in concert with the cerebellum in trace conditioning to enable 
declarative memory — and thus conscious awareness — to form a conscious image from 
memory to relate the CS and US across the temporal gap. 

The same effect has been reported for shuttle-box avoidance learning by Portavella et 
al. (2004a). As described above, while DM lesions impaired shuttle-box avoidance learning, 
DL lesions had no effect when the delay procedure was used. However, when a trace 
procedure in which there was a five-second delay between the offset of the CS in the onset of 
the US was used, both DM and DL lesions impaired shuttle-box avoidance learning. These 
results are compatible with research in humans indicating that trace conditioning involves 
conscious awareness (Clark and Squire 1998) and hence give some support to the hypothesis 
that fish are sentient. 

In addition to TI, Eichenbaum (2000) considers allocentric spatial learning to be a 
clear indication of the presence of declarative memory in animals. Allocentric spatial learning 
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refers to the ability of a person or animal to encode and organize the memory system for 
spatial information based on the physical relationships of objects as part of a distant scene 
independent of the subject’s position relative to those objects. A large number of teleost 
species demonstrate allocentric spatial learning (e.g., Brown 2014; Durán et al. 2010; Creson 
et al. 2003; White and Brown 2015). The mammalian hippocampus is associated with 
allocentric spatial processing (Nadel 1991). The following evidence indicates that the DL is 
associated with spatial learning in fish.  

Hippocampal neurons in rats show place-related increases in the firing rate, and 
hippocampal lesions impair allocentric spatial learning in rats (Nadel 1991). DL neurons in 
freely swimming goldfish and cichlid fish show place-related increases in the firing rate 
(Canfield and Mizumori 2004), and Uceda et al. (2015) observed spatial-learning-related 
increases in metabolic activity in the goldfish ventral DLv. Furthermore, a series of 
experiments from the Seville group indicate that lesions of the entire DL (e.g., Durán et al. 
2010; J. Vargas et al. 2006), or just to the DLv (Bingman et al. 2017), impair allocentric spatial 
learning in goldfish. DM lesions, on the other hand, have no effect on allocentric spatial 
learning (Durán et al. 2010; J. Vargas et al. 2006).  
 
5.3 The Pallium and Behavior: Summary 

 
In this section I have described the results of experiments which indicate a double 

dissociation between the behavioral effects of DM and DL lesions. DL lesions impair behavior 
only when the task demands that a relationship among stimuli be maintained across time or 
in space. I argue that this implicates the DL in declarative memory which by general 
consensus implies conscious awareness. DM lesions, on the other hand, impair behaviors 
generally associated with procedural memory which does not require conscious awareness. 
However, even here, the DM may be involved in the affective component of sentience if the 
two-process theory of shuttle-box learning is interpreted to involve a subjective sense of fear. 
Particularly for the DM, the function of these pallial structures in the modulation of behavior 
is part of a network that includes core subpallial structures. However, I argue that the DL 
plays an important role in the generation of mental images, and thereby sentience, when 
declarative memory is required for successful execution of motor programs that are 
organized in brainstem structures. 
 
6. CONCLUSION 
 

In this target article, I have argued that fish are sentient. As indicated above, this 
argument has been cogently made by others based on the complexity of brainstem circuitry 
(e.g., Feinberg and Mallatt 2013, 2016; Merker 2007), and the flexibility and complexity of 
the behavior of fishes (e.g., Balcombe 2016; Braithwaite 2010; Brown 2014; Brown et al. 
2011). I have also argued that the intrinsic neuroanatomical organization and extrinsic 
connections of the pallium, particularly with the PgC and the tectum, are complex enough to 
be at least weakly analogous to the circuitry of the cortex and thalamus assumed by some to 
underlie sentience in mammals. Neurophysiological and behavioral data further support the 
hypothesis that fish have the capacity for sentience.  

Based on the evidence reviewed in this paper, I suggest that the pallium is an 
important part of the hierarchical network proposed by Feinberg and Mallatt (2016) to 
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underlie sentience in fishes. The tectum is at the core of this network. The tectum receives 
segregated sensory input and has the local and global reentrant neural circuitry needed to 
amplify and process this input. Segregation of the sensory modalities is maintained through 
the PgC to the pallium. The pallium also receives input from subpallial structures involved in 
placing a positive or negative valence on this input. These inputs are then integrated by 
various divisions of the pallium. Particularly in the case of the DL and declarative memory, 
the result of this integration is the formation of mental images that permit relational 
interactions among stimuli and flexible regulation of behaviors organized in the brainstem.  

In her book Animal Minds, Andrews (2015) makes the point that, “Members of the 
human species have human minds, and if members of other species have minds, they will 
have species-specific minds of their own” (p. 4). It is safe to say the same about those 
processes of the mind of fishes I call sentience. Fish sentience differs from human sentience, 
and what it feels like is as unknowable to us as what it feels like to be a bat. However, just as 
Nagel (1974) found it reasonable for there to be something it feels like to be a bat, I think that 
it is reasonable to adduce from the existing evidence that there is something it feels like to be 
a fish. 
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UQÀM/ISC Cognitive Science Summer School June 26 - July 6 2018, Montreal, Canada 

The Other Minds Problem: Animal Sentience and Cognition 

Overview. Since Descartes, philosophers know there is no way to know for sure what — or whether — others feel 

(not even if they tell you). Science, however, is not about certainty but about probability and evidence. The 7.5 

billion individual members of the human species can tell us what they are feeling. But there are 9 million other 

species on the planet (20 quintillion individuals), from elephants to jellyfish, with which humans share biological and 

cognitive ancestry, but not one other species can speak: Which of them can feel — and what do they feel? Their 

human spokespersons — the comparative psychologists, ethologists, evolutionists, and cognitive neurobiologists 

who are the world’s leading experts in “mind-reading" other species -- will provide a sweeping panorama of what it 

feels like to be an elephant, ape, whale, cow, pig, dog, bat, chicken, fish, lizard, lobster, snail: This growing body of 

facts about nonhuman sentience has profound implications not only for our understanding of human cognition, but 

for our treatment of other sentient species. 

Gregory Berns: Decoding the Dog's Mind with Awake 
Neuroimaging 
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Jon Sakata: Audience Effects on Communication 
Signals 

PANEL 1: Reptiles, Birds and Mammals 

WORKSHOP 1: Kristin Andrews: The "Other" 
Problems: Mind, Behavior, and Agency9 

Sarah Brosnan: How Do Primates Feel About Their 
Social Partners?  

Alexander Ophir: The Cognitive Ecology of 
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Michael Hendricks: Integrating Action and Perception 
in a Small Nervous System 
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WORKSHOP 2: Jonathan Birch: Animal Sentience 
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Malcolm MacIver: How Sentience Changed After Fish 
Invaded Land 385 Million Years Ago 

Sarah Woolley: Neural Mechanisms of Preference in 
Female Songbird 

Simon Reader: Animal Social Learning: Implications 
for Understanding Others 

PANEL 3: Sea to Land to Air 

WORKSHOP 3: Steven M. Wise: Nonhuman 
Personhood 

Tomoko Ohyama: Action Selection in a Small Brain 
(Drosophila Maggot) 

Mike Ryan: "Crazy Love": Nonlinearity and 
Irrationality in Mate Choice 
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PANEL 4: Maggots, Frogs and Birds: Flexibility 
Evolving 

SPECIAL EVENT: Mario Cyr: Polar Bears 
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Are Different?  
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Jonathan Balcombe: The Sentient World of Fishes 
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Concept of Her Future 
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Joshua Plotnik: Thoughtful Trunks: Application of 
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Cortex is Required for Pain Experiences? 
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