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Abstract: We cannot agree with Segundo-Ortin and Calvo that plants are sentient organisms. 
We have critically examined several aspects of their target article, and find their claims are not 
supported by the published evidence. We address these claims in sections on whether plants 
have a ‘neurobiology’ analogous to that of animal nervous systems, including 
neurotransmitters and synaptic receptors that respond to anesthetics; and whether plant 
signaling resembles neural transmission. For the latter, we especially consider the unique way 
plants signal their responses to wounding. Although the plant vascular system has been 
compared to the animal nervous system, animal blood vessels would be a better point of 
comparison. 
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"The gravest danger to a speculative biologist is analogy. It is a pitfall to be 
avoided--the industry of the bee, the economics of the ant, the villainy of the 
snake, all in human terms have given us profound misconceptions of the 
animals."                                                                     Steinbeck & Ricketts (1941)  

1. Introduction 
 

Claims for plant sentience, or consciousness, have been made numerous times since the 
advent of the controversial field of Plant Neurobiology in 2006. In the target article, Segundo-
Ortin & Calvo (2023) state: “The goal of Plant Neurobiology (PN) is to understand how the 
information signaling mechanisms across the root and shoot systems that give rise to 
intelligent behavior are in plants integrated and fine-tuned”. In its original formulation 
(Baluška et al., 2005; Brenner et al., 2006) plants were proposed to have functional equivalents 
to synapses, to transport auxin in synaptic-like vesicles and to perform neuron-like electrical 
signaling via the vascular system, especially the phloem. Subsequently, additional animal 
characteristics such as hearing, seeing, feeling pain, consciousness, and memory were 
introduced into the PN concept. We have challenged the validity of these claims on numerous 
occasions (Taiz et al. 2019, 2020; Mallatt et al., 2021a, b, c; Robinson & Draguhn, 2021), and 
have argued against PN’s putative heuristic value for understanding plant behavior (Mallatt et 
al., 2021b). We continue to adhere to the standpoint that plants are neither cognitive nor 
sentient in the sense that these terms are commonly used in psychology, ethology, cognitive- 
and neurosciences. In this commentary, we comment on several neurobiological properties 
that the target article claims are shared by animals and plants and thus pointing to plant 
sentience. These erroneous equations demand clarification, if not refutation. 
 
2. “Plant neurotransmitters” and anesthetics 
 
As with other articles hypothesizing plant neurobiology, Segundo-Ortin & Calvo (2023) 
attribute to sentience the fact that (1) plants have some of the same molecules that act as 
neurotransmitters in animals and that (2) anesthetics reduce plant responsiveness. As defined 
by Wikipedia “a neurotransmitter is a signaling molecule secreted by a neuron to affect 
another cell across a synapse. The cell receiving the signal, or target cell, may be another 
neuron, but could also be a gland or muscle cell”. The most common neurotransmitters are 
glutamate, gamma-aminobutyric acid (GABA) and acetylcholine. The former two are found in 
the phloem of plants, and act as signaling molecules, but do not fit the definition of 
neurotransmitters because plants lack synapses (Robinson & Draguhn, 2021). In plants, 
glutamate signals are involved in growth, development, and defense responses (Toyota et al., 
2018; Qiu et al., 2020; Liao et al., 2022) whereas GABA increases stress tolerance (e.g., upon 
wounding), activates antioxidant enzymes, facilitates photosynthesis, and signals 
development and growth (Li et al., 2021). It is to be noted that these roles are hormone-like 
and unrelated to what is expected for neural activities (Robinson & Draguhn, 2021). 
 
Glutamate receptors exist in plants as ‘glutamate receptor-like ion channels’ and are 
structurally similar to their animal counterparts (Mousavi et al., 2013); however, as just 
mentioned, this glutamate-receptor system performs many plant-specific physiological 
functions that neurons do not perform (Wudick et al., 2018; Moroz et al., 2022).  GABA 
receptors are also found in plants (Žárský, 2015), but have little sequence homology to their 
animal counterparts (Ramesh et al., 2017). Glutamate and GABA receptors are gated ion 
channels (Franks, 2015; Nguyen et al., 2018); they evolved earlier than nervous systems 
(Bouché et al., 2003; Varoqueaux & Fasshauer, 2017). Since glutamate and GABA in plants, 

https://en.wikipedia.org/wiki/Signaling_molecule
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Chemical_synapse
https://en.wikipedia.org/wiki/Gland
https://en.wikipedia.org/wiki/Muscle_cell
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plus their receptors, differ from neurotransmitter systems in many ways, caution should be 
exercised in using these molecules as evidence for neurological similarities between plants 
and animals. 
 
Does the way volatile anesthetics affect plants indicate plant sentience?  In animal neurons, 
the principal targets of anesthetics are ion channels; e.g., ligand-gated receptors for glutamate 
and GABA, and voltage-gated K+ channels (Kelz & Mashour, 2019; Hao et al., 2020; Luo & Balle, 
2022). Since glutamate and GABA receptors are present in plants it would appear to be a 
sensible strategy to investigate the effects of these drugs on plants. Indeed, a number of 
studies have documented that volatile anesthetics block sensory reception, inhibit diverse 
plant-organ movements, disrupt vesicle trafficking and paralyze Venus flytrap movements 
(Yokawa et al. 2018). Although a direct effect on plant glutamate and GABA receptors remains 
to be demonstrated, it is known that anesthetics do interfere with long-distance transmission 
of electrical signals in plants (Jakšová et al., 2021), and with transport across plasma 
membranes, particularly to suppress the entry of Ca2+ (Pavlovič et al., 2022). Anesthetics also 
lead to a strong reprogramming of gene expression akin to heat shock stress (Pavlovič et al., 
2022).  
 
On the other hand, anesthetics have so many specific, nonspecific, and phylogenetically 
universal effects that it is difficult to tell whether the plant-animal similarities are homologous.  
For example, anesthetics are likely to target glutamate receptors in both plants and animals 
(the similarity), but in plants their only known effect on these receptors is on an electrical 
wound-signal called a slow wave potential (see below), which animals do not produce (a big 
difference) (Jakšová et al., 2021). Another example of the difficulty is that although anesthetics 
affect vesicle-mediated transport in both the plant Arabidopsis (Yokawa et al., 2018; Pavlovič 
et al., 2022) and in animal synapses, it seems too big a leap to equate these vesicle effects 
because anesthetics have so many additional effects on synapses (Kelz & Mashour, 2019) and 
because plants lack synapses.  It is safer to conclude that the differences are more important 
than the similarities, for the major reason that plants do not show the disrupted neural 
networks that dominate animals’ responses to anesthetics. Thus, the similarities are too 
sparse to support the hypothesis, repeatedly proposed by plant neurobiologists (Baluška et 
al., 2016; Trewavas et al., 2020), that plants are sentient organisms merely because they lose 
responsiveness under anesthesia.   
 
3. Is signaling in plants similar to neural transmission? 
 
3.1 Action Potentials. The fact that both plants and animals have action potentials (APs) was 
a basis for the Plant Neurobiology concept (Brenner et al. 2006) and remains so up to the 
present time (Baluška & Mancuso, 2021; Lee & Calvo, 2022; Segundo-Ortin & Calvo, 2023). 
The resulting propensity to look for neuron-like characteristics in plants seems to have  
become an idée fixe among plant neurobiologists, despite the fact that the electrochemical 
origin of APs in nerves is completely different from that in plants, involving a Ca2+ influx rather 
than a Na+ influx (Canales et al., 2018; Klejchova et al., 2021; Mallatt et al., 2021a). Moreover, 
the propagation of plant APs is 100 to 1000 times slower and, unlike neuronal APs, is 
associated with a wave of elevated cytosolic Ca2+. Whereas neuronal APs are osmotically 
neutral, plant APs serve for osmotic regulation in aquatic plants such as Chara (Bielby, 2007; 
Kisnieriene et al., 2022), drive stomatal closure through osmotic-turgor pressure in land plants 
(Minguet-Parramona et al., 2016), and are responsible for the rapid closure of the Venus 
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flytrap (Scherzer et al., 2022). As emphasized by Kjelchova et al. (2021) “such electrical 
characteristics do not imply higher sensory function”. Thus, and in contrast to the suggestion 
of plant neurobiologists (e.g., Calvo et al., 2017; Calvo & Trewavas, 2020), there is no 
“electrochemical equivalency” between plants and animals.  
 
3.2 Slow wave potentials and wounding. Plant neurobiologists’ overemphasis on APs as the 
major factor in electrical signaling in plants unfortunately diverts interest away from other 
types of electrical signaling which are unique to plants. The best-studied of these signals is the 
slow wave potential (SWP, or variation potential). Whereas APs, conducted along the phloem, 
are often responses to nondamaging stimuli such as touch, SWPs signal a plant’s defense 
responses to destructive wounding (Zimmermann et al., 2009; Farmer et al., 2020). However, 
it should be noted that the most severe wounding triggers both phloem APs and additional 
long-duration SWP signaling (pers. communication, E. E. Farmer). In addition, wound-induced 
SWPs have been shown to mediate direct plant-to-plant transmission (via physical touching) 
of systemic physiological changes in plants and systemic acquired acclimation (Szechynska-
Hebda et al., 2022).  
 
Enormous advances have been made in the past decade in understanding the transmission of 
leaf-to-leaf wound responses, although the exact roles of some of the participating factors 
remain to be clarified (Gao & Farmer, 2023; Gao et al., 2023). It is now clear that unlike 
electrical transmission in neurons, wound signaling in plants involves at least two different 
types of elicitors (all leading to the synthesis of the defense hormone jasmonate: Wang et al., 
2019). One is glutamate, principally found in the phloem, and the other is carried in the xylem; 
these are the so-called Ricca’s factors, which are ß-thioglucoside glucohydrolases. Both 
elicitors trigger the production of SWPs followed by a wave of Ca2+ moving through the 
phloem and surrounding tissues leaf to leaf. Nguyen et al. (2018, Fig. 5D) have demonstrated 
the SWP-to-Ca2+ sequence by showing that in a leaf distal to a wounded leaf, cytosolic Ca2+ 
levels peak approximately 40 seconds after the maximal membrane depolarization.  
 
Glutamate is likely a gating ligand for the glutamate receptor-like ion channels (GLRs, Alfieri 
et al., 2020); and extracellular glutamate levels increase after wounding (Toyota et al., 2018). 
When applied at millimolar levels onto a cotyledon leaf, glutamate was found to cause large 
cytosolic influxes of Ca2+ (as calcium waves: Bellandi et al., 2022) and to generate SWP-like 
signals (Shao et al., 2020). However, unlike their counterparts in neurons, the highest levels 
of the GLR proteins are located either on the endoplasmic reticulum (Nguyen et al., 2018) or 
the tonoplast (Gao & Farmer, 2023), rather than on the plasma membrane.  
 
The ß-thioglucoside glucohydrolases (TGGs) were recently discovered to be important 
mediators of wound signaling in plants (Gao et al. 2023) and are completely absent from 
neurons. After herbivore wounding TGGs are released from myrosin cells in the phloem 
parenchyma, and gluosinolates (GSLs) are released from other damaged vascular idioblasts. 
The TGGs hydrolyze the GSLs, producing aglycones that elicit the SWP membrane 
depolarization. TGGs are transported in the upward-moving xylem sap and continue to 
hydrolyze GSLs when they are encountered. Mutants with defective TGG genes show reduced 
Ca2+ increases and diminished SWP propagation in response to wounding. Conversely, 
recombinant TGG introduced into the xylem of both wild-type plants and tgg mutants elicits 
membrane depolarization and Ca2+ increases (Gao et al., 2023). These effects of TGG are 
different from those of glutamate, however, based on experiments performed on glr mutants.  
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Interestingly, double and triple mutants of TGG and GLR showed strong attenuations in 
amplitude and duration of SWPs, indicating that both phloem and xylem participate in SWP 
propagation.  
 
Wound-induced signaling in plants is therefore a complex form of electrical communication 
unique to plants. This is in no way comparable to the transmission of electrical signals in 
neurons. Moreover, and most important, especially in terms of sentience/consciousness, is 
the fact that plants lack any form of reciprocal communication.  That is, while there are 
forward signals (travelling from the site of the stimulus to the site of action), there are no 
feedback signals. This contrasts sharply with the heavy reciprocal electrical signaling seen 
among neurons in the brains of conscious mammals (Lamme, 2006; Mashour et al., 2020).   
 
4. Is the analogy of the plant vascular system to the animal nervous system valid? 
 
Comparisons are often made between the vascular systems of plants and the nervous systems 
of animals (e.g., Segundo-Ortin & Calvo, 2023), even though plant vasculature lacks cells with 
synapses, which contrasts with  animal neurons, many of which have thousands of synaptic 
connections to other neurons---and, of course, the plant vascular system has no brain (Mallatt 
et al., 2021a; Robinson & Draguhn, 2021).  
 
Instead, plant vasculature is better compared to the blood-carrying vascular system of 
animals. Both these systems function to transport water, nutrients, mineral ions, and 
hormones throughout the body, and both conduct electrical signals over distances.  More 
specifically, phloem conducts APs and SWPs (the latter with the help of xylem cells) for long-
distance signaling (Canales et al., 2018), and independently, animal vasculature evolved 
voltage transients in its endothelium and musculature to modulate resistance to blood flow 
by regulating vessel diameter (Tran et al., 2012; Hall & Hall, 2020; Jackson, 2022). Both plant 
and animal vascular systems use electrical signaling to regulate the hydrostatic pressure. Thus, 
xylem and phloem cells are arguably more analogous to the endothelial cells of animal 
arteries, which also lack synapses, than to the neuronal cells of the nervous system. Similarly, 
the relatively simple networks of vascular tissue present in plant shoots are more comparable 
to branching animal vascular networks than they are to complex neuronal networks (Mallatt 
et al., 2021a). Importantly, vascular networks, unlike neuronal networks, are not directly 
involved in the mental functions of animals. Plants and animals both have vascular networks, 
but only animals have neuronal networks. 
 
5. Concluding Remarks 
 
Based on the foregoing, we are of the opinion that the relentless search for analogies in terms 
of electrical signaling between plants and animals is a futile intellectual exercise with limited 
practical value. The differences between plants and animals in this regard are so significant 
that attempts to draw conclusions about sentience in plants are simply not justified, nor 
pedagogically helpful. Thus, the humanization of plant life, or, more correctly, the application 
to plants of terms from mammalian sensory physiology (seeing, hearing, feeling, 
consciousness, intentionality), has no solid scientific basis. It perpetuates an anthropomorphic 
bias and misleads the uninformed reader.   
 
Acknowledgment. We thank Prof. E. E. Farmer (Univ. Lausanne) for useful discussions on wound 
signaling. 
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